These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
991 related items for PubMed ID: 16808910
1. Computer systems analysis of spaceflight induced changes in left ventricular mass. Summers RL, Martin DS, Meck JV, Coleman TG. Comput Biol Med; 2007 Mar; 37(3):358-63. PubMed ID: 16808910 [Abstract] [Full Text] [Related]
2. Mechanism of spaceflight-induced changes in left ventricular mass. Summers RL, Martin DS, Meck JV, Coleman TG. Am J Cardiol; 2005 May 01; 95(9):1128-30. PubMed ID: 15842991 [Abstract] [Full Text] [Related]
3. Computer systems analysis of the cardiovascular mechanisms of reentry orthostasis in astronauts. Summers RL, Coleman TG. Comput Cardiol; 2002 May 01; 29():521-4. PubMed ID: 14686452 [Abstract] [Full Text] [Related]
6. Contribution of REM sleep to Fos and FRA expression in the vestibular nuclei of rat leading to vestibular adaptation during the STS-90 Neurolab Mission. Pompeiano O. Arch Ital Biol; 2007 Jan 01; 145(1):55-85. PubMed ID: 17274184 [Abstract] [Full Text] [Related]
8. Regulation of body fluid volume and electrolyte concentrations in spaceflight. Smith SM, Krauhs JM, Leach CS. Adv Space Biol Med; 1997 Jan 01; 6():123-65. PubMed ID: 9048137 [Abstract] [Full Text] [Related]
9. Changes in monocyte functions of astronauts. Kaur I, Simons ER, Castro VA, Ott CM, Pierson DL. Brain Behav Immun; 2005 Nov 01; 19(6):547-54. PubMed ID: 15908177 [Abstract] [Full Text] [Related]
10. Physiologic mechanisms effecting circulatory and body fluid losses in weightlessness as shown by mathematical modeling. Simanonok KE, Srinivasan RS, Charles JB. Physiologist; 1993 Nov 01; 36(1 Suppl):S112-3. PubMed ID: 11537415 [Abstract] [Full Text] [Related]
12. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning. Gaveau J, Paizis C, Berret B, Pozzo T, Papaxanthis C. J Neurophysiol; 2011 Aug 01; 106(2):620-9. PubMed ID: 21562193 [Abstract] [Full Text] [Related]
15. Cardiovascular deconditioning and venous air embolism in simulated microgravity in the rat. Robinson RR, Doursout MF, Chelly JE, Powell MR, Little TM, Butler BD. Aviat Space Environ Med; 1996 Sep 01; 67(9):835-40. PubMed ID: 9025798 [Abstract] [Full Text] [Related]
16. Endocrine, renal, and circulatory influences on fluid and electrolyte homeostasis during weightlessness: a joint Russian-U.S. project. Grigoriev AI, Huntoon CL, Morukov BV, Lane HW, Larina IM, Smith SM. J Gravit Physiol; 1996 Sep 01; 3(2):83-6. PubMed ID: 11540295 [Abstract] [Full Text] [Related]
17. Respiratory modulation of human autonomic function: long-term neuroplasticity in space. Eckberg DL, Diedrich A, Cooke WH, Biaggioni I, Buckey JC, Pawelczyk JA, Ertl AC, Cox JF, Kuusela TA, Tahvanainen KU, Mano T, Iwase S, Baisch FJ, Levine BD, Adams-Huet B, Robertson D, Blomqvist CG. J Physiol; 2016 Oct 01; 594(19):5629-46. PubMed ID: 27029027 [Abstract] [Full Text] [Related]
18. Changes in neutrophil functions in astronauts. Kaur I, Simons ER, Castro VA, Mark Ott C, Pierson DL. Brain Behav Immun; 2004 Sep 01; 18(5):443-50. PubMed ID: 15265537 [Abstract] [Full Text] [Related]
19. Consequences of cardiovascular adaptation to spaceflight: implications for the use of pharmacological countermeasures. Convertino VA. Gravit Space Biol Bull; 2005 Jun 01; 18(2):59-69. PubMed ID: 16038093 [Abstract] [Full Text] [Related]