These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


225 related items for PubMed ID: 16815821

  • 1. Electrotonic transmission within pericyte-containing retinal microvessels.
    Wu DM, Minami M, Kawamura H, Puro DG.
    Microcirculation; 2006; 13(5):353-63. PubMed ID: 16815821
    [Abstract] [Full Text] [Related]

  • 2. Endothelin-induced changes in the physiology of retinal pericytes.
    Kawamura H, Oku H, Li Q, Sakagami K, Puro DG.
    Invest Ophthalmol Vis Sci; 2002 Mar; 43(3):882-8. PubMed ID: 11867611
    [Abstract] [Full Text] [Related]

  • 3. Dopamine activates ATP-sensitive K+ currents in rat retinal pericytes.
    Wu DM, Kawamura H, Li Q, Puro DG.
    Vis Neurosci; 2001 Mar; 18(6):935-40. PubMed ID: 12020084
    [Abstract] [Full Text] [Related]

  • 4. Effects of angiotensin II on the pericyte-containing microvasculature of the rat retina.
    Kawamura H, Kobayashi M, Li Q, Yamanishi S, Katsumura K, Minami M, Wu DM, Puro DG.
    J Physiol; 2004 Dec 15; 561(Pt 3):671-83. PubMed ID: 15486015
    [Abstract] [Full Text] [Related]

  • 5. ATP: a vasoactive signal in the pericyte-containing microvasculature of the rat retina.
    Kawamura H, Sugiyama T, Wu DM, Kobayashi M, Yamanishi S, Katsumura K, Puro DG.
    J Physiol; 2003 Sep 15; 551(Pt 3):787-99. PubMed ID: 12876212
    [Abstract] [Full Text] [Related]

  • 6. Nitric oxide/cGMP-induced inhibition of calcium and chloride currents in retinal pericytes.
    Sakagami K, Kawamura H, Wu DM, Puro DG.
    Microvasc Res; 2001 Sep 15; 62(2):196-203. PubMed ID: 11516249
    [Abstract] [Full Text] [Related]

  • 7. Insulin-induced hyperpolarization in retinal capillary pericytes.
    Berweck S, Thieme H, Lepple-Wienhues A, Helbig H, Wiederholt M.
    Invest Ophthalmol Vis Sci; 1993 Nov 15; 34(12):3402-7. PubMed ID: 8225875
    [Abstract] [Full Text] [Related]

  • 8. Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature.
    Yamanishi S, Katsumura K, Kobayashi T, Puro DG.
    Am J Physiol Heart Circ Physiol; 2006 Mar 15; 290(3):H925-34. PubMed ID: 16299264
    [Abstract] [Full Text] [Related]

  • 9. Adenosine activates ATP-sensitive K(+) currents in pericytes of rat retinal microvessels: role of A1 and A2a receptors.
    Li Q, Puro DG.
    Brain Res; 2001 Jul 13; 907(1-2):93-9. PubMed ID: 11430889
    [Abstract] [Full Text] [Related]

  • 10. NAD+-induced vasotoxicity in the pericyte-containing microvasculature of the rat retina: effect of diabetes.
    Liao SD, Puro DG.
    Invest Ophthalmol Vis Sci; 2006 Nov 13; 47(11):5032-8. PubMed ID: 17065524
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Physiology and pathobiology of the pericyte-containing retinal microvasculature: new developments.
    Puro DG.
    Microcirculation; 2007 Jan 13; 14(1):1-10. PubMed ID: 17365657
    [Abstract] [Full Text] [Related]

  • 13. Physiology of rat retinal pericytes: modulation of ion channel activity by serum-derived molecules.
    Sakagami K, Wu DM, Puro DG.
    J Physiol; 1999 Dec 15; 521 Pt 3(Pt 3):637-50. PubMed ID: 10601495
    [Abstract] [Full Text] [Related]

  • 14. PGI2 opens potassium channels in retinal pericytes by cyclic AMP-stimulated, cross-activation of PKG.
    Burnette JO, White RE.
    Exp Eye Res; 2006 Dec 15; 83(6):1359-65. PubMed ID: 16959250
    [Abstract] [Full Text] [Related]

  • 15. Blockers of carbonic anhydrase can cause increase of retinal capillary diameter, decrease of extracellular and increase of intracellular pH in rat retinal organ culture.
    Reber F, Gersch U, Funk RW.
    Graefes Arch Clin Exp Ophthalmol; 2003 Feb 15; 241(2):140-8. PubMed ID: 12605269
    [Abstract] [Full Text] [Related]

  • 16. Control of descending vasa recta pericyte membrane potential by angiotensin II.
    Pallone TL, Huang JM.
    Am J Physiol Renal Physiol; 2002 Jun 15; 282(6):F1064-74. PubMed ID: 11997323
    [Abstract] [Full Text] [Related]

  • 17. Cholinergic regulation of pericyte-containing retinal microvessels.
    Wu DM, Kawamura H, Sakagami K, Kobayashi M, Puro DG.
    Am J Physiol Heart Circ Physiol; 2003 Jun 15; 284(6):H2083-90. PubMed ID: 12560212
    [Abstract] [Full Text] [Related]

  • 18. Diabetes-induced disruption of gap junction pathways within the retinal microvasculature.
    Oku H, Kodama T, Sakagami K, Puro DG.
    Invest Ophthalmol Vis Sci; 2001 Jul 15; 42(8):1915-20. PubMed ID: 11431461
    [Abstract] [Full Text] [Related]

  • 19. Topographical heterogeneity of K(IR) currents in pericyte-containing microvessels of the rat retina: effect of diabetes.
    Matsushita K, Puro DG.
    J Physiol; 2006 Jun 01; 573(Pt 2):483-95. PubMed ID: 16581863
    [Abstract] [Full Text] [Related]

  • 20. Loss of insulin-mediated vasoprotection: early effect of diabetes on pericyte-containing microvessels of the retina.
    Kobayashi T, Puro DG.
    Invest Ophthalmol Vis Sci; 2007 May 01; 48(5):2350-5. PubMed ID: 17460301
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.