These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
108 related items for PubMed ID: 16823964
1. Quantitative characterizations of proteome: dependence on the number of proteins considered. Randić M. J Proteome Res; 2006 Jul; 5(7):1575-9. PubMed ID: 16823964 [Abstract] [Full Text] [Related]
2. On the dependence of a characterization of proteomics maps on the number of protein spots considered. Randić M, Witzmann FA, Kodali V, Basak SC. J Chem Inf Model; 2006 Jul; 46(1):116-22. PubMed ID: 16426047 [Abstract] [Full Text] [Related]
3. Novel map descriptors for characterization of toxic effects in proteomics maps. Bajzer Z, Randić M, Plavsić D, Basak SC. J Mol Graph Model; 2003 Sep; 22(1):1-9. PubMed ID: 12798386 [Abstract] [Full Text] [Related]
4. Charge modification in rodent hepatic Grp78/BiP following exposure to structurally diverse peroxisome proliferators. Witzmann FA, Jarnot BM, Clack JW. Appl Theor Electrophor; 1994 Sep; 4(2):81-8. PubMed ID: 7880882 [Abstract] [Full Text] [Related]
5. Study of proteome maps using partial ordering. Randić M, Novic M, Vracko M, Plavsić D. J Theor Biol; 2010 Sep 07; 266(1):21-8. PubMed ID: 20542044 [Abstract] [Full Text] [Related]
6. Complex graph matrix representations and characterizations of proteomic maps and chemically induced changes to proteomes. Balasubramanian K, Khokhani K, Basak SC. J Proteome Res; 2006 May 07; 5(5):1133-42. PubMed ID: 16674102 [Abstract] [Full Text] [Related]
7. Regulation of xanthine dehydrogenase in rat liver in response to peroxisome proliferators. Satoh A, Sasago S, Takahashi S, Kato N. Biochem Biophys Res Commun; 1993 Sep 15; 195(2):751-7. PubMed ID: 8373410 [Abstract] [Full Text] [Related]
8. Effects of perfluoro-n-octanoic acid, perfluoro-n-decanoic acid, and clofibrate on hepatic phosphorus metabolism in rats and guinea pigs in vivo. Reo NV, Goecke CM, Narayanan L, Jarnot BM. Toxicol Appl Pharmacol; 1994 Feb 15; 124(2):165-73. PubMed ID: 8122261 [Abstract] [Full Text] [Related]
9. Novel characterization of proteomics maps by sequential neighborhoods of protein spots. Randić M, Novic M, Vracko M. J Chem Inf Model; 2005 Feb 15; 45(5):1205-13. PubMed ID: 16180897 [Abstract] [Full Text] [Related]
10. Thyromimetic action of the peroxisome proliferators clofibrate, perfluorooctanoic acid, and acetylsalicylic acid includes changes in mRNA levels for certain genes involved in mitochondrial biogenesis. Cai Y, Nelson BD, Li R, Luciakova K, dePierre JW. Arch Biochem Biophys; 1996 Jan 01; 325(1):107-12. PubMed ID: 8554334 [Abstract] [Full Text] [Related]
11. Order from chaos: observing hormesis at the proteome level. Randić M, Estrada E. J Proteome Res; 2005 Jan 01; 4(6):2133-6. PubMed ID: 16335959 [Abstract] [Full Text] [Related]
12. Proteomic analysis of hepatic protein profiles in rare minnow (Gobiocypris rarus) exposed to perfluorooctanoic acid. Wei Y, Chan LL, Wang D, Zhang H, Wang J, Dai J. J Proteome Res; 2008 Apr 01; 7(4):1729-39. PubMed ID: 18303832 [Abstract] [Full Text] [Related]
13. [Effects of peroxisome proliferators PFOA on immune system of mice]. Yang J, Li A, Yang Q, Li X. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2006 Mar 01; 22(2):157-60. PubMed ID: 16507247 [Abstract] [Full Text] [Related]
14. Introducing the CPL/MUW proteome database: interpretation of human liver and liver cancer proteome profiles by referring to isolated primary cells. Wimmer H, Gundacker NC, Griss J, Haudek VJ, Stättner S, Mohr T, Zwickl H, Paulitschke V, Baron DM, Trittner W, Kubicek M, Bayer E, Slany A, Gerner C. Electrophoresis; 2009 Jun 01; 30(12):2076-89. PubMed ID: 19582709 [Abstract] [Full Text] [Related]
15. Effect of structurally diverse peroxisome proliferators on rat hepatic sulfotransferase. Witzmann F, Coughtrie M, Fultz C, Lipscomb J. Chem Biol Interact; 1996 Jan 05; 99(1-3):73-84. PubMed ID: 8620580 [Abstract] [Full Text] [Related]
16. Guanidination chemistry for qualitative and quantitative proteomics. Warwood S, Mohammed S, Cristea IM, Evans C, Whetton AD, Gaskell SJ. Rapid Commun Mass Spectrom; 2006 Jan 05; 20(21):3245-56. PubMed ID: 17019669 [Abstract] [Full Text] [Related]
17. Proteolytic 18O-labeling strategies for quantitative proteomics. Miyagi M, Rao KC. Mass Spectrom Rev; 2007 Jan 05; 26(1):121-36. PubMed ID: 17086517 [Abstract] [Full Text] [Related]
18. A rapid and simple procedure for the depletion of abundant storage proteins from legume seeds to advance proteome analysis: a case study using Glycine max. Krishnan HB, Oehrle NW, Natarajan SS. Proteomics; 2009 Jun 05; 9(11):3174-88. PubMed ID: 19526550 [Abstract] [Full Text] [Related]
19. Introducing a new parameter for quality control of proteome profiles: consideration of commonly expressed proteins. Slany A, Haudek VJ, Gundacker NC, Griss J, Mohr T, Wimmer H, Eisenbauer M, Elbling L, Gerner C. Electrophoresis; 2009 Apr 05; 30(8):1306-28. PubMed ID: 19382132 [Abstract] [Full Text] [Related]
20. Application of the SILAC (stable isotope labelling with amino acids in cell culture) technique in quantitative comparisons for tissue proteome expression. Xu Y, Liang S, Shen G, Xu X, Liu Q, Xu Z, Gong F, Tang M, Wei Y. Biotechnol Appl Biochem; 2009 Jul 06; 54(1):11-20. PubMed ID: 19250064 [Abstract] [Full Text] [Related] Page: [Next] [New Search]