These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


446 related items for PubMed ID: 1682478

  • 1. Nicorandil: differential contribution of K+ channel opening and guanylate cyclase stimulation to its vasorelaxant effects on various endothelin-1-contracted arterial preparations. Comparison to aprikalim (RP 52891) and nitroglycerin.
    Borg C, Mondot S, Mestre M, Cavero I.
    J Pharmacol Exp Ther; 1991 Nov; 259(2):526-34. PubMed ID: 1682478
    [Abstract] [Full Text] [Related]

  • 2. The contribution of guanylate cyclase stimulation and K+ channel opening to nicorandil-induced vasorelaxation depends on the conduit vessel and on the nature of the spasmogen.
    Magnon M, Durand I, Cavero I.
    J Pharmacol Exp Ther; 1994 Mar; 268(3):1411-8. PubMed ID: 7908056
    [Abstract] [Full Text] [Related]

  • 3. K+ channel opening mediates the vasorelaxant effects of nicorandil in the intact vascular system.
    Cavero I, Pratz J, Mondot S.
    Z Kardiol; 1991 Mar; 80 Suppl 7():35-41. PubMed ID: 1838848
    [Abstract] [Full Text] [Related]

  • 4. Comparison of nicorandil-induced relaxation, elevations of cyclic guanosine monophosphate and stimulation of guanylate cyclase with organic nitrate esters.
    Greenberg SS, Cantor E, Ho E, Walega M.
    J Pharmacol Exp Ther; 1991 Sep; 258(3):1061-71. PubMed ID: 1679847
    [Abstract] [Full Text] [Related]

  • 5. Nicorandil-induced vasorelaxation: functional evidence for K+ channel-dependent and cyclic GMP-dependent components in a single vascular preparation.
    Meisheri KD, Cipkus-Dubray LA, Hosner JM, Khan SA.
    J Cardiovasc Pharmacol; 1991 Jun; 17(6):903-12. PubMed ID: 1714013
    [Abstract] [Full Text] [Related]

  • 6. Role of K+ channel opening and stimulation of cyclic GMP in the vasorelaxant effects of nicorandil in isolated piglet pulmonary and mesenteric arteries: relative efficacy and interactions between both pathways.
    Pérez-Vizcaíno F, Cogolludo AL, Villamor E, Tamargo J.
    Br J Pharmacol; 1998 Mar; 123(5):847-54. PubMed ID: 9535012
    [Abstract] [Full Text] [Related]

  • 7. Analysis of relaxation and repolarization mechanisms of nicorandil in rat mesenteric artery.
    Fujiwara T, Angus JA.
    Br J Pharmacol; 1996 Dec; 119(8):1549-56. PubMed ID: 8982500
    [Abstract] [Full Text] [Related]

  • 8. Glibenclamide is a competitive antagonist of cromakalim, pinacidil and RP 49356 in guinea-pig pulmonary artery.
    Eltze M.
    Eur J Pharmacol; 1989 Jun 20; 165(2-3):231-9. PubMed ID: 2528466
    [Abstract] [Full Text] [Related]

  • 9. Differential antagonism by glibenclamide of the relaxant effects of cromakalim, pinacidil and nicorandil on canine large coronary arteries.
    Satoh K, Yamada H, Taira N.
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Jan 20; 343(1):76-82. PubMed ID: 1827660
    [Abstract] [Full Text] [Related]

  • 10. Regional differences in the vasorelaxant effects of nicorandil and amlodipine on isolated porcine coronary arteries.
    Tankó LB, Mikkelsen EO, Frøbert O, Bagger JP.
    Fundam Clin Pharmacol; 1998 Jan 20; 12(1):50-7. PubMed ID: 9523184
    [Abstract] [Full Text] [Related]

  • 11. Nicorandil activates glibenclamide-sensitive K+ channels in smooth muscle cells of pig proximal urethra.
    Teramoto N, Brading AF.
    J Pharmacol Exp Ther; 1997 Jan 20; 280(1):483-91. PubMed ID: 8996232
    [Abstract] [Full Text] [Related]

  • 12. Comparison of the vascular relaxant effects of ATP-dependent K+ channel openers on aorta and pulmonary artery isolated from spontaneously hypertensive and Wistar-Kyoto rats.
    Kwan YW, To KW, Lau WM, Tsang SH.
    Eur J Pharmacol; 1999 Jan 22; 365(2-3):241-51. PubMed ID: 9988108
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Dual mechanism of the relaxing effect of nicorandil by stimulation of cyclic GMP formation and by hyperpolarization.
    Kukovetz WR, Holzmann S, Braida C, Pöch G.
    J Cardiovasc Pharmacol; 1991 Apr 22; 17(4):627-33. PubMed ID: 1711631
    [Abstract] [Full Text] [Related]

  • 15. Inotropic and coronary vasodilatory actions of the K-adenosine triphosphate channel modulator nicorandil in human tissue.
    Müller-Ehmsen J, Brixius K, Hoischen S, Schwinger RH.
    J Pharmacol Exp Ther; 1996 Dec 22; 279(3):1220-8. PubMed ID: 8968344
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Effects of nicorandil on cytosolic calcium concentrations and on tension development in the rabbit femoral artery.
    Abe S, Nishimura J, Nakamura M, Kanaide H.
    J Pharmacol Exp Ther; 1994 Feb 22; 268(2):762-71. PubMed ID: 8113988
    [Abstract] [Full Text] [Related]

  • 18. The inhibitory mechanisms of nicorandil in isolated rat urinary bladder and femoral artery.
    Zhou Q, Satake N, Shibata S.
    Eur J Pharmacol; 1995 Jan 24; 273(1-2):153-9. PubMed ID: 7737309
    [Abstract] [Full Text] [Related]

  • 19. Relationship between cyclic guanosine monophosphate accumulation and relaxation of canine trachealis induced by nitrovasodilators.
    Zhou HL, Torphy TJ.
    J Pharmacol Exp Ther; 1991 Sep 24; 258(3):972-8. PubMed ID: 1679854
    [Abstract] [Full Text] [Related]

  • 20. Vasorelaxant mechanism of KRN2391 and nicorandil in porcine coronary arteries of different sizes.
    Miwa A, Kaneta S, Motoki K, Jinno Y, Kasai H, Okada Y, Fukushima H, Ogawa N.
    Br J Pharmacol; 1993 Jul 24; 109(3):632-6. PubMed ID: 8358563
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.