These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


375 related items for PubMed ID: 16825439

  • 1. Iron and arsenic release from aquifer solids in response to biostimulation.
    McLean JE, Dupont RR, Sorensen DL.
    J Environ Qual; 2006; 35(4):1193-203. PubMed ID: 16825439
    [Abstract] [Full Text] [Related]

  • 2. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR, Holmes DE, Nevin KP.
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [Abstract] [Full Text] [Related]

  • 3. Anaerobic Fe(II)-oxidizing bacteria show as resistance and immobilize as during Fe(III) mineral precipitation.
    Hohmann C, Winkler E, Morin G, Kappler A.
    Environ Sci Technol; 2010 Jan 01; 44(1):94-101. PubMed ID: 20039738
    [Abstract] [Full Text] [Related]

  • 4. Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential.
    Wildung RE, Li SW, Murray CJ, Krupka KM, Xie Y, Hess NJ, Roden EE.
    FEMS Microbiol Ecol; 2004 Jul 01; 49(1):151-62. PubMed ID: 19712393
    [Abstract] [Full Text] [Related]

  • 5. Application of biological processes for the removal of arsenic from groundwaters.
    Katsoyiannis IA, Zouboulis AI.
    Water Res; 2004 Jan 01; 38(1):17-26. PubMed ID: 14630099
    [Abstract] [Full Text] [Related]

  • 6. Role of indigenous arsenate and iron(III) respiring microorganisms in controlling the mobilization of arsenic in a contaminated soil sample.
    Vaxevanidou K, Christou C, Kremmydas GF, Georgakopoulos DG, Papassiopi N.
    Bull Environ Contam Toxicol; 2015 Mar 01; 94(3):282-8. PubMed ID: 25588567
    [Abstract] [Full Text] [Related]

  • 7. Arsenic mobilization from iron oxyhydroxides is regulated by organic matter carbon to nitrogen (C:N) ratio.
    Solaiman AR, Meharg AA, Gault AG, Charnock JM.
    Environ Int; 2009 Apr 01; 35(3):480-4. PubMed ID: 18793800
    [Abstract] [Full Text] [Related]

  • 8. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas.
    Sharif MU, Davis RK, Steele KF, Kim B, Hays PD, Kresse TM, Fazio JA.
    J Contam Hydrol; 2008 Jul 29; 99(1-4):49-67. PubMed ID: 18486990
    [Abstract] [Full Text] [Related]

  • 9. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE.
    Lee IS, Bae JH, McCarty PL.
    J Contam Hydrol; 2007 Oct 30; 94(1-2):76-85. PubMed ID: 17610987
    [Abstract] [Full Text] [Related]

  • 10. Presence and mobility of arsenic in estuarine wetland soils of the Scheldt estuary (Belgium).
    Du Laing G, Chapagain SK, Dewispelaere M, Meers E, Kazama F, Tack FM, Rinklebe J, Verloo MG.
    J Environ Monit; 2009 Apr 30; 11(4):873-81. PubMed ID: 19557243
    [Abstract] [Full Text] [Related]

  • 11. Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene.
    Paul L, Smolders E.
    Chemosphere; 2014 Sep 30; 111():471-7. PubMed ID: 24997954
    [Abstract] [Full Text] [Related]

  • 12. Geochemical and microbiological processes contributing to the transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in contaminated aquifer material.
    Kwon MJ, O'Loughlin EJ, Antonopoulos DA, Finneran KT.
    Chemosphere; 2011 Aug 30; 84(9):1223-30. PubMed ID: 21664641
    [Abstract] [Full Text] [Related]

  • 13. Potential for microbially mediated redox transformations and mobilization of arsenic in uncontaminated soils.
    Yamamura S, Watanabe M, Yamamoto N, Sei K, Ike M.
    Chemosphere; 2009 Sep 30; 77(2):169-74. PubMed ID: 19716583
    [Abstract] [Full Text] [Related]

  • 14. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil.
    Weber FA, Hofacker AF, Voegelin A, Kretzschmar R.
    Environ Sci Technol; 2010 Jan 01; 44(1):116-22. PubMed ID: 20039741
    [Abstract] [Full Text] [Related]

  • 15. Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17.
    Li XM, Zhou SG, Li FB, Wu CY, Zhuang L, Xu W, Liu L.
    J Appl Microbiol; 2009 Jan 01; 106(1):130-9. PubMed ID: 19054230
    [Abstract] [Full Text] [Related]

  • 16. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T.
    Chemosphere; 2011 May 01; 83(7):925-32. PubMed ID: 21420713
    [Abstract] [Full Text] [Related]

  • 17. The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from west bengal aquifer sediments.
    Rowland HA, Boothman C, Pancost R, Gault AG, Polya DA, Lloyd JR.
    J Environ Qual; 2009 May 01; 38(4):1598-607. PubMed ID: 19549936
    [Abstract] [Full Text] [Related]

  • 18. Enhancement of arsenic mobility by indigenous bacteria from mine tailings as response to organic supply.
    Lee JU, Lee SW, Chon HT, Kim KW, Lee JS.
    Environ Int; 2009 Apr 01; 35(3):496-501. PubMed ID: 18789531
    [Abstract] [Full Text] [Related]

  • 19. Arsenic in glacial aquifers: sources and geochemical controls.
    Kelly WR, Holm TR, Wilson SD, Roadcap GS.
    Ground Water; 2005 Apr 01; 43(4):500-10. PubMed ID: 16029176
    [Abstract] [Full Text] [Related]

  • 20. Mobilisation of arsenic from a mining soil in batch slurry experiments under bio-oxidative conditions.
    Bayard R, Chatain V, Gachet C, Troadec A, Gourdon R.
    Water Res; 2006 Mar 01; 40(6):1240-1248. PubMed ID: 16529789
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.