These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States. Kimball KD, Davis ML, Weihrauch DM, Murray GL, Rancourt K. Am J Bot; 2014 Sep; 101(9):1437-46. PubMed ID: 25253704 [Abstract] [Full Text] [Related]
44. Phenological records as a complement to aerobiological data. Tormo R, Silva I, Gonzalo A, Moreno A, Pérez R, Fernández S. Int J Biometeorol; 2011 Jan; 55(1):51-65. PubMed ID: 20354733 [Abstract] [Full Text] [Related]
45. Phenological change in a spring ephemeral: implications for pollination and plant reproduction. Gezon ZJ, Inouye DW, Irwin RE. Glob Chang Biol; 2016 May; 22(5):1779-93. PubMed ID: 26833694 [Abstract] [Full Text] [Related]
46. Meteorological variation effect on aerobiology--new tools on pollen forecasting. Galán C, García-Mozo, Alcázar H, Dominguez P. Eur Ann Allergy Clin Immunol; 2006 Jun; 38(6):203-8. PubMed ID: 16929748 [Abstract] [Full Text] [Related]
53. Shifts in the flowering phenology of the northern Great Plains: patterns over 100 years. Dunnell KL, Travers SE. Am J Bot; 2011 Jun; 98(6):935-45. PubMed ID: 21613073 [Abstract] [Full Text] [Related]
54. Statistical approach to the analysis of olive long-term pollen season trends in southern Spain. García-Mozo H, Yaezel L, Oteros J, Galán C. Sci Total Environ; 2014 Mar 01; 473-474():103-9. PubMed ID: 24361781 [Abstract] [Full Text] [Related]
55. Pollen calendar of the city of Salamanca (Spain). Aeropalynological analysis for 1981-1982 and 1991-1992. Hernández Prieto M, Lorente Toledano F, Romo Cortina A, Dávila González I, Laffond Yges E, Calvo Bullón A. Allergol Immunopathol (Madr); 1998 Mar 01; 26(5):209-22. PubMed ID: 9885728 [Abstract] [Full Text] [Related]
56. Earlier spring reduces potential for gene flow via reduced flowering synchrony across an elevational gradient. Rivest S, Lajoie G, Watts DA, Vellend M. Am J Bot; 2021 Mar 01; 108(3):538-545. PubMed ID: 33733494 [Abstract] [Full Text] [Related]
57. Dynamic ecological observations from satellites inform aerobiology of allergenic grass pollen. Devadas R, Huete AR, Vicendese D, Erbas B, Beggs PJ, Medek D, Haberle SG, Newnham RM, Johnston FH, Jaggard AK, Campbell B, Burton PK, Katelaris CH, Newbigin E, Thibaudon M, Davies JM. Sci Total Environ; 2018 Aug 15; 633():441-451. PubMed ID: 29579655 [Abstract] [Full Text] [Related]
58. Effect of flowering phenology on pollen flow distance and the consequences for spatial genetic structure within a population of Primula sieboldii (Primulaceae). Kitamoto N, Ueno S, Takenaka A, Tsumura Y, Washitani I, Ohsawa R. Am J Bot; 2006 Feb 15; 93(2):226-33. PubMed ID: 21646183 [Abstract] [Full Text] [Related]
59. Regional and seasonal variation in airborne grass pollen levels between cities of Australia and New Zealand. Medek DE, Beggs PJ, Erbas B, Jaggard AK, Campbell BC, Vicendese D, Johnston FH, Godwin I, Huete AR, Green BJ, Burton PK, Bowman DM, Newnham RM, Katelaris CH, Haberle SG, Newbigin E, Davies JM. Aerobiologia (Bologna); 2016 Jun 15; 32(2):289-302. PubMed ID: 27069303 [Abstract] [Full Text] [Related]
60. Comparative analysis of pollen counts of Corylus, Alnus and Betula in Szczecin, Warsaw and Lublin (2000-2001). Weryszko-Chmielewska E, Puc M, Rapiejko P. Ann Agric Environ Med; 2001 Jun 15; 8(2):235-40. PubMed ID: 11748882 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]