These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
231 related items for PubMed ID: 16838792
1. New nodulation mutants responsible for infection thread development in Lotus japonicus. Yano K, Tansengco ML, Hio T, Higashi K, Murooka Y, Imaizumi-Anraku H, Kawaguchi M, Hayashi M. Mol Plant Microbe Interact; 2006 Jul; 19(7):801-10. PubMed ID: 16838792 [Abstract] [Full Text] [Related]
6. Isolation and phenotypic characterization of Lotus japonicus mutants specifically defective in arbuscular mycorrhizal formation. Kojima T, Saito K, Oba H, Yoshida Y, Terasawa J, Umehara Y, Suganuma N, Kawaguchi M, Ohtomo R. Plant Cell Physiol; 2014 May; 55(5):928-41. PubMed ID: 24492255 [Abstract] [Full Text] [Related]
12. Conditional requirement for exopolysaccharide in the Mesorhizobium-Lotus symbiosis. Kelly SJ, Muszyński A, Kawaharada Y, Hubber AM, Sullivan JT, Sandal N, Carlson RW, Stougaard J, Ronson CW. Mol Plant Microbe Interact; 2013 Mar; 26(3):319-29. PubMed ID: 23134480 [Abstract] [Full Text] [Related]
13. The Mesorhizobium loti purB gene is involved in infection thread formation and nodule development in Lotus japonicus. Okazaki S, Hattori Y, Saeki K. J Bacteriol; 2007 Nov; 189(22):8347-52. PubMed ID: 17827288 [Abstract] [Full Text] [Related]
14. Grafting between model legumes demonstrates roles for roots and shoots in determining nodule type and host/rhizobia specificity. Lohar DP, VandenBosch KA. J Exp Bot; 2005 Jun; 56(416):1643-50. PubMed ID: 15824071 [Abstract] [Full Text] [Related]
15. Knockdown of LjIPT3 influences nodule development in Lotus japonicus. Chen Y, Chen W, Li X, Jiang H, Wu P, Xia K, Yang Y, Wu G. Plant Cell Physiol; 2014 Jan; 55(1):183-93. PubMed ID: 24285753 [Abstract] [Full Text] [Related]
16. Lotus japonicus clathrin heavy Chain1 is associated with Rho-Like GTPase ROP6 and involved in nodule formation. Wang C, Zhu M, Duan L, Yu H, Chang X, Li L, Kang H, Feng Y, Zhu H, Hong Z, Zhang Z. Plant Physiol; 2015 Apr; 167(4):1497-510. PubMed ID: 25717037 [Abstract] [Full Text] [Related]
17. Genetic suppressors of the Lotus japonicus har1-1 hypernodulation phenotype. Murray J, Karas B, Ross L, Brachmann A, Wagg C, Geil R, Perry J, Nowakowski K, MacGillivary M, Held M, Stougaard J, Peterson L, Parniske M, Szczyglowski K. Mol Plant Microbe Interact; 2006 Oct; 19(10):1082-91. PubMed ID: 17022172 [Abstract] [Full Text] [Related]
18. LjnsRING, a novel RING finger protein, is required for symbiotic interactions between Mesorhizobium loti and Lotus japonicus. Shimomura K, Nomura M, Tajima S, Kouchi H. Plant Cell Physiol; 2006 Nov; 47(11):1572-81. PubMed ID: 17056617 [Abstract] [Full Text] [Related]
19. Knockdown of LjALD1, AGD2-like defense response protein 1, influences plant growth and nodulation in Lotus japonicus. Chen W, Li X, Tian L, Wu P, Li M, Jiang H, Chen Y, Wu G. J Integr Plant Biol; 2014 Nov; 56(11):1034-41. PubMed ID: 24797909 [Abstract] [Full Text] [Related]
20. Gene expression and localization of a β-1,3-glucanase of Lotus japonicus. Osuki KI, Hashimoto S, Suzuki A, Araragi M, Takahara A, Kurosawa M, Kucho KI, Higashi S, Abe M, Uchiumi T. J Plant Res; 2016 Jul; 129(4):749-758. PubMed ID: 26951113 [Abstract] [Full Text] [Related] Page: [Next] [New Search]