These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization time-of-flight mass spectrometry. Rellán-Alvarez R, Abadía J, Alvarez-Fernández A. Rapid Commun Mass Spectrom; 2008 May; 22(10):1553-62. PubMed ID: 18421700 [Abstract] [Full Text] [Related]
4. Coordination ability of trans-cyclohexane-1,2-diamine-N,N,N',N'-tetrakis(methylenephosphonic acid) towards lanthanide(III) ions. Gałezowska J, Janicki R, Mondry A, Burgada R, Bailly T, Lecouvey M, Kozłowski H. Dalton Trans; 2006 Sep 28; (36):4384-94. PubMed ID: 16967123 [Abstract] [Full Text] [Related]
5. Hard and soft X-ray absorption spectroscopic investigation of aqueous Fe(III)-hydroxamate siderophore complexes. Edwards DC, Myneni SC. J Phys Chem A; 2005 Nov 17; 109(45):10249-56. PubMed ID: 16833318 [Abstract] [Full Text] [Related]
6. Determination of the pKa value of the hydroxyl group in the alpha-hydroxycarboxylates citrate, malate and lactate by 13C NMR: implications for metal coordination in biological systems. Silva AM, Kong X, Hider RC. Biometals; 2009 Oct 17; 22(5):771-8. PubMed ID: 19288211 [Abstract] [Full Text] [Related]
7. Strong metal ion size based selectivity of the highly preorganized ligand PDA (1,10-phenanthroline-2,9-dicarboxylic acid) with trivalent metal ions. A crystallographic, fluorometric, and thermodynamic study. Williams NJ, Dean NE, VanDerveer DG, Luckay RC, Hancock RD. Inorg Chem; 2009 Aug 17; 48(16):7853-63. PubMed ID: 19603801 [Abstract] [Full Text] [Related]
8. Mixed-donor, alpha-hydroxy acid-containing chelates for binding and light-triggered release of iron. Sayre H, Milos K, Goldcamp MJ, Schroll CA, Krause JA, Baldwin MJ. Inorg Chem; 2010 May 17; 49(10):4433-9. PubMed ID: 20397713 [Abstract] [Full Text] [Related]
9. Transferrin, is a mixed chelate-protein ternary complex involved in the mechanism of iron uptake by serum-transferrin in vitro? Pakdaman R, Abdallah FB, El Hage Chahine JM. J Mol Biol; 1999 Nov 12; 293(5):1273-84. PubMed ID: 10547300 [Abstract] [Full Text] [Related]
10. Iron(III) complexes of fluorescent hydroxamate ligands: preparation, properties, and cellular processing. Clarke AJ, Yamamoto N, Jensen P, Hambley TW. Dalton Trans; 2009 Dec 28; (48):10787-98. PubMed ID: 20023908 [Abstract] [Full Text] [Related]
11. Synthesis and characterization of glucosyl-curcuminoids as Fe3+ suppliers in the treatment of iron deficiency. Ferrari E, Arezzini B, Ferrali M, Lazzari S, Pignedoli F, Spagnolo F, Saladini M. Biometals; 2009 Oct 28; 22(5):701-10. PubMed ID: 19205899 [Abstract] [Full Text] [Related]
12. pH-specific synthetic chemistry and solution studies in the binary system of iron(III) with the alpha-hydroxycarboxylate substrate quinic acid: potential relevance to iron chemistry in plant fluids. Menelaou M, Mateescu C, Zhao H, Rodriguez-Escudero I, Lalioti N, Sanakis Y, Simopoulos A, Salifoglou A. Inorg Chem; 2009 Mar 02; 48(5):1844-56. PubMed ID: 19235948 [Abstract] [Full Text] [Related]
13. Iron(II) complexes with amide-containing macrocycles as non-heme porphyrin analogues. Korendovych IV, Kryatova OP, Reiff WM, Rybak-Akimova EV. Inorg Chem; 2007 May 14; 46(10):4197-211. PubMed ID: 17419619 [Abstract] [Full Text] [Related]
14. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties. Mayilmurugan R, Visvaganesan K, Suresh E, Palaniandavar M. Inorg Chem; 2009 Sep 21; 48(18):8771-83. PubMed ID: 19694480 [Abstract] [Full Text] [Related]
15. 1,6-Dimethyl-4-hydroxy-3-pyridinecarboxylic acid and 4-hydroxy-2-methyl-3-pyridinecarboxylic acid as new possible chelating agents for iron and aluminium. Dean A, Ferlin MG, Brun P, Castagliuolo I, Yokel RA, Badocco D, Pastore P, Venzo A, Bombi GG, Di Marco VB. Dalton Trans; 2009 Mar 14; (10):1815-24. PubMed ID: 19240917 [Abstract] [Full Text] [Related]
16. Enterobactin protonation and iron release: structural characterization of the salicylate coordination shift in ferric enterobactin. Abergel RJ, Warner JA, Shuh DK, Raymond KN. J Am Chem Soc; 2006 Jul 12; 128(27):8920-31. PubMed ID: 16819888 [Abstract] [Full Text] [Related]
17. Peptide-bond modification for metal coordination: peptides containing two hydroxamate groups. Ye Y, Liu M, Kao JL, Marshall GR. Biopolymers; 2003 Jul 12; 71(4):489-515. PubMed ID: 14517900 [Abstract] [Full Text] [Related]
18. Unravelling the intrinsic features of NO binding to iron(II)- and iron(III)-hemes. Chiavarino B, Crestoni ME, Fornarini S, Rovira C. Inorg Chem; 2008 Sep 01; 47(17):7792-801. PubMed ID: 18681420 [Abstract] [Full Text] [Related]
19. Iron-catalyzed C2-C3 bond cleavage of phenylpyruvate with O2: insight into aliphatic C-C bond-cleaving dioxygenases. Paine TK, England J, Que L. Chemistry; 2007 Sep 01; 13(21):6073-81. PubMed ID: 17469086 [Abstract] [Full Text] [Related]