These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


441 related items for PubMed ID: 16842801

  • 1. The neuromuscular demands of toe walking: a forward dynamics simulation analysis.
    Neptune RR, Burnfield JM, Mulroy SJ.
    J Biomech; 2007; 40(6):1293-300. PubMed ID: 16842801
    [Abstract] [Full Text] [Related]

  • 2. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.
    Neptune RR, Sasaki K.
    J Exp Biol; 2005 Mar; 208(Pt 5):799-808. PubMed ID: 15755878
    [Abstract] [Full Text] [Related]

  • 3. Muscle compensatory mechanisms during able-bodied toe walking.
    Sasaki K, Neptune RR, Burnfield JM, Mulroy SJ.
    Gait Posture; 2008 Apr; 27(3):440-6. PubMed ID: 17624784
    [Abstract] [Full Text] [Related]

  • 4. Biomechanical characterization and clinical implications of artificially induced toe-walking: differences between pure soleus, pure gastrocnemius and combination of soleus and gastrocnemius contractures.
    Matjacić Z, Olensek A, Bajd T.
    J Biomech; 2006 Apr; 39(2):255-66. PubMed ID: 16321627
    [Abstract] [Full Text] [Related]

  • 5. Muscle force redistributes segmental power for body progression during walking.
    Neptune RR, Zajac FE, Kautz SA.
    Gait Posture; 2004 Apr; 19(2):194-205. PubMed ID: 15013508
    [Abstract] [Full Text] [Related]

  • 6. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking.
    Neptune RR, Kautz SA, Zajac FE.
    J Biomech; 2001 Nov; 34(11):1387-98. PubMed ID: 11672713
    [Abstract] [Full Text] [Related]

  • 7. Increased power generation in impaired lower extremities correlated with changes in walking speeds in sub-acute stroke patients.
    Brincks J, Nielsen JF.
    Clin Biomech (Bristol); 2012 Feb; 27(2):138-44. PubMed ID: 21899933
    [Abstract] [Full Text] [Related]

  • 8. Mechanics and control of the flat versus normal foot during the stance phase of walking.
    Hunt AE, Smith RM.
    Clin Biomech (Bristol); 2004 May; 19(4):391-7. PubMed ID: 15109760
    [Abstract] [Full Text] [Related]

  • 9. Compensatory strategies during normal walking in response to muscle weakness and increased hip joint stiffness.
    Goldberg EJ, Neptune RR.
    Gait Posture; 2007 Mar; 25(3):360-7. PubMed ID: 16720095
    [Abstract] [Full Text] [Related]

  • 10. Toe walking: muscular demands at the ankle and knee.
    Perry J, Burnfield JM, Gronley JK, Mulroy SJ.
    Arch Phys Med Rehabil; 2003 Jan; 84(1):7-16. PubMed ID: 12589614
    [Abstract] [Full Text] [Related]

  • 11. Changes in muscle activity in children with hemiplegic cerebral palsy while walking with and without ankle-foot orthoses.
    Romkes J, Hell AK, Brunner R.
    Gait Posture; 2006 Dec; 24(4):467-74. PubMed ID: 16413188
    [Abstract] [Full Text] [Related]

  • 12. Role of gastrocnemius-soleus muscle in forefoot force transmission at heel rise - A 3D finite element analysis.
    Chen WM, Park J, Park SB, Shim VP, Lee T.
    J Biomech; 2012 Jun 26; 45(10):1783-9. PubMed ID: 22578743
    [Abstract] [Full Text] [Related]

  • 13. Linking clinical measurements and kinematic gait patterns of toe-walking using fuzzy decision trees.
    Armand S, Watelain E, Roux E, Mercier M, Lepoutre FX.
    Gait Posture; 2007 Mar 26; 25(3):475-84. PubMed ID: 16837198
    [Abstract] [Full Text] [Related]

  • 14. Changes in muscle group work associated with changes in gait speed of persons with stroke.
    Parvataneni K, Olney SJ, Brouwer B.
    Clin Biomech (Bristol); 2007 Aug 26; 22(7):813-20. PubMed ID: 17512646
    [Abstract] [Full Text] [Related]

  • 15. Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking.
    To CS, Kirsch RF, Kobetic R, Triolo RJ.
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun 26; 13(2):227-35. PubMed ID: 16003904
    [Abstract] [Full Text] [Related]

  • 16. Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: an induced position analysis.
    Anderson FC, Goldberg SR, Pandy MG, Delp SL.
    J Biomech; 2004 May 26; 37(5):731-7. PubMed ID: 15047002
    [Abstract] [Full Text] [Related]

  • 17. An electromyographic analysis of obligatory (hemiplegic cerebral palsy) and voluntary (normal) unilateral toe-walking.
    Romkes J, Brunner R.
    Gait Posture; 2007 Oct 26; 26(4):577-86. PubMed ID: 17275305
    [Abstract] [Full Text] [Related]

  • 18. Evaluation of plantar flexion contracture contribution during the gait of children with Duchenne muscular dystrophy.
    Gaudreault N, Gravel D, Nadeau S.
    J Electromyogr Kinesiol; 2009 Jun 26; 19(3):e180-6. PubMed ID: 17977021
    [Abstract] [Full Text] [Related]

  • 19. Toe-out gait in patients with knee osteoarthritis partially transforms external knee adduction moment into flexion moment during early stance phase of gait: a tri-planar kinetic mechanism.
    Jenkyn TR, Hunt MA, Jones IC, Giffin JR, Birmingham TB.
    J Biomech; 2008 Jun 26; 41(2):276-83. PubMed ID: 18061197
    [Abstract] [Full Text] [Related]

  • 20. Effect of equinus foot placement and intrinsic muscle response on knee extension during stance.
    Higginson JS, Zajac FE, Neptune RR, Kautz SA, Burgar CG, Delp SL.
    Gait Posture; 2006 Jan 26; 23(1):32-6. PubMed ID: 16311192
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.