These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
259 related items for PubMed ID: 16844090
1. Prediction of pi-turns in proteins using PSI-BLAST profiles and secondary structure information. Wang Y, Xue ZD, Shi XH, Xu J. Biochem Biophys Res Commun; 2006 Sep 01; 347(3):574-80. PubMed ID: 16844090 [Abstract] [Full Text] [Related]
2. Better prediction of the location of alpha-turns in proteins with support vector machine. Wang Y, Xue Z, Xu J. Proteins; 2006 Oct 01; 65(1):49-54. PubMed ID: 16894602 [Abstract] [Full Text] [Related]
3. Prediction of alpha-turns in proteins using PSI-BLAST profiles and secondary structure information. Kaur H, Raghava GP. Proteins; 2004 Apr 01; 55(1):83-90. PubMed ID: 14997542 [Abstract] [Full Text] [Related]
4. A neural network method for prediction of beta-turn types in proteins using evolutionary information. Kaur H, Raghava GP. Bioinformatics; 2004 Nov 01; 20(16):2751-8. PubMed ID: 15145798 [Abstract] [Full Text] [Related]
5. PRINTR: prediction of RNA binding sites in proteins using SVM and profiles. Wang Y, Xue Z, Shen G, Xu J. Amino Acids; 2008 Aug 01; 35(2):295-302. PubMed ID: 18235992 [Abstract] [Full Text] [Related]
6. Using support vector machine to predict beta- and gamma-turns in proteins. Hu X, Li Q. J Comput Chem; 2008 Sep 01; 29(12):1867-75. PubMed ID: 18432623 [Abstract] [Full Text] [Related]
7. A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment. Kaur H, Raghava GP. Protein Sci; 2003 May 01; 12(5):923-9. PubMed ID: 12717015 [Abstract] [Full Text] [Related]
9. Prediction of transmembrane regions of beta-barrel proteins using ANN- and SVM-based methods. Natt NK, Kaur H, Raghava GP. Proteins; 2004 Jul 01; 56(1):11-8. PubMed ID: 15162482 [Abstract] [Full Text] [Related]
10. A novel method for protein secondary structure prediction using dual-layer SVM and profiles. Guo J, Chen H, Sun Z, Lin Y. Proteins; 2004 Mar 01; 54(4):738-43. PubMed ID: 14997569 [Abstract] [Full Text] [Related]
12. High accuracy prediction of beta-turns and their types using propensities and multiple alignments. Fuchs PF, Alix AJ. Proteins; 2005 Jun 01; 59(4):828-39. PubMed ID: 15822097 [Abstract] [Full Text] [Related]
15. Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information. Mooney C, Pollastri G. Proteins; 2009 Oct 01; 77(1):181-90. PubMed ID: 19422056 [Abstract] [Full Text] [Related]
16. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure. Song J, Yuan Z, Tan H, Huber T, Burrage K. Bioinformatics; 2007 Dec 01; 23(23):3147-54. PubMed ID: 17942444 [Abstract] [Full Text] [Related]
17. Improved method for predicting beta-turn using support vector machine. Zhang Q, Yoon S, Welsh WJ. Bioinformatics; 2005 May 15; 21(10):2370-4. PubMed ID: 15797917 [Abstract] [Full Text] [Related]
18. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. Hua S, Sun Z. J Mol Biol; 2001 Apr 27; 308(2):397-407. PubMed ID: 11327775 [Abstract] [Full Text] [Related]
19. Using predicted shape string to enhance the accuracy of γ-turn prediction. Zhu Y, Li T, Li D, Zhang Y, Xiong W, Sun J, Tang Z, Chen G. Amino Acids; 2012 May 27; 42(5):1749-55. PubMed ID: 21424809 [Abstract] [Full Text] [Related]