These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
152 related items for PubMed ID: 16850419
1. Analysis of the defence phosphoproteome of Arabidopsis thaliana using differential mass tagging. Jones AM, Bennett MH, Mansfield JW, Grant M. Proteomics; 2006 Jul; 6(14):4155-65. PubMed ID: 16850419 [Abstract] [Full Text] [Related]
3. Identification of phosphoproteins in Arabidopsis thaliana leaves using polyethylene glycol fractionation, immobilized metal-ion affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry. Aryal UK, Krochko JE, Ross AR. J Proteome Res; 2012 Jan 01; 11(1):425-37. PubMed ID: 22092075 [Abstract] [Full Text] [Related]
6. Pseudomonas syringae elicits emission of the terpenoid (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4. Attaran E, Rostás M, Zeier J. Mol Plant Microbe Interact; 2008 Nov 01; 21(11):1482-97. PubMed ID: 18842097 [Abstract] [Full Text] [Related]
8. The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana. Underwood W, Zhang S, He SY. Plant J; 2007 Nov 01; 52(4):658-72. PubMed ID: 17877704 [Abstract] [Full Text] [Related]
9. Proteomic analysis of defense response of wildtype Arabidopsis thaliana and plants with impaired NO- homeostasis. Holzmeister C, Fröhlich A, Sarioglu H, Bauer N, Durner J, Lindermayr C. Proteomics; 2011 May 01; 11(9):1664-83. PubMed ID: 21462345 [Abstract] [Full Text] [Related]
10. Discovery of ADP-ribosylation and other plant defense pathway elements through expression profiling of four different Arabidopsis-Pseudomonas R-avr interactions. Adams-Phillips L, Wan J, Tan X, Dunning FM, Meyers BC, Michelmore RW, Bent AF. Mol Plant Microbe Interact; 2008 May 01; 21(5):646-57. PubMed ID: 18393624 [Abstract] [Full Text] [Related]
11. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Mishina TE, Zeier J. Plant J; 2007 May 01; 50(3):500-13. PubMed ID: 17419843 [Abstract] [Full Text] [Related]
16. Phosphoproteome exploration reveals a reformatting of cellular processes in response to low sterol biosynthetic capacity in Arabidopsis. Heintz D, Gallien S, Compagnon V, Berna A, Suzuki M, Yoshida S, Muranaka T, Van Dorsselaer A, Schaeffer C, Bach TJ, Schaller H. J Proteome Res; 2012 Feb 03; 11(2):1228-39. PubMed ID: 22182420 [Abstract] [Full Text] [Related]
18. A high-throughput chemical screen for resistance to Pseudomonas syringae in Arabidopsis. Schreiber K, Ckurshumova W, Peek J, Desveaux D. Plant J; 2008 May 03; 54(3):522-31. PubMed ID: 18248597 [Abstract] [Full Text] [Related]
19. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Wang X, Basnayake BM, Zhang H, Li G, Li W, Virk N, Mengiste T, Song F. Mol Plant Microbe Interact; 2009 Oct 03; 22(10):1227-38. PubMed ID: 19737096 [Abstract] [Full Text] [Related]