These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Morphology-controlled synthesis and a comparative study of the physical properties of SnO2 nanostructures: from ultrathin nanowires to ultrawide nanobelts. Zhang Z, Gao J, Wong LM, Tao JG, Liao L, Zheng Z, Xing GZ, Peng HY, Yu T, Shen ZX, Huan CH, Wang SJ, Wu T. Nanotechnology; 2009 Apr 01; 20(13):135605. PubMed ID: 19420508 [Abstract] [Full Text] [Related]
10. Catalyst-assisted formation of nanocantilever arrays on ZnS nanoribbons by post-annealing treatment. Li Y, Zou K, Shan YY, Zapien JA, Lee ST. J Phys Chem B; 2006 Apr 06; 110(13):6759-62. PubMed ID: 16570982 [Abstract] [Full Text] [Related]
11. Rapid synthesis of core/shell ZnS:Mn/Si nanotetrapods by a catalyst-free thermal evaporation route. Kar S, Biswas S. ACS Appl Mater Interfaces; 2009 Jul 06; 1(7):1420-6. PubMed ID: 20355944 [Abstract] [Full Text] [Related]
12. Epitaxial heterostructures: side-to-side Si-ZnS, Si-ZnSe biaxial nanowires, and sandwichlike ZnS-Si-ZnS triaxial nanowires. Hu J, Bando Y, Liu Z, Sekiguchi T, Golberg D, Zhan J. J Am Chem Soc; 2003 Sep 17; 125(37):11306-13. PubMed ID: 16220953 [Abstract] [Full Text] [Related]
13. Direct synthesis of ZnO nanowire arrays on Zn foil by a simple thermal evaporation process. Ghoshal T, Biswas S, Kar S, Dev A, Chakrabarti S, Chaudhuri S. Nanotechnology; 2008 Feb 13; 19(6):065606. PubMed ID: 21730704 [Abstract] [Full Text] [Related]
14. Metal phthalocyanine nanoribbons and nanowires. Tong WY, Djurisić AB, Xie MH, Ng AC, Cheung KY, Chan WK, Leung YH, Lin HW, Gwo S. J Phys Chem B; 2006 Sep 07; 110(35):17406-13. PubMed ID: 16942077 [Abstract] [Full Text] [Related]
15. Synthesis and optical properties of S-doped ZnO nanostructures: nanonails and nanowires. Shen G, Cho JH, Yoo JK, Yi GC, Lee CJ. J Phys Chem B; 2005 Mar 31; 109(12):5491-6. PubMed ID: 16851588 [Abstract] [Full Text] [Related]
16. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. Barrelet CJ, Wu Y, Bell DC, Lieber CM. J Am Chem Soc; 2003 Sep 24; 125(38):11498-9. PubMed ID: 13129343 [Abstract] [Full Text] [Related]
17. High surface-to-volume ratio ZnO microberets: low temperature synthesis, characterization, and photoluminescence. Lu H, Liao L, Li J, Wang D, He H, Fu Q, Xu L, Tian Y. J Phys Chem B; 2006 Nov 23; 110(46):23211-4. PubMed ID: 17107167 [Abstract] [Full Text] [Related]
18. Carbothermal chemical vapor deposition route to Se one-dimensional nanostructures and their optical properties. Zhang H, Zuo M, Tan S, Li G, Zhang S, Hou J. J Phys Chem B; 2005 Jun 02; 109(21):10653-7. PubMed ID: 16852293 [Abstract] [Full Text] [Related]
19. Synthesis of hierarchical pure ZnO nanostructures with controllable morphology. Fan DH, Zhu YF, Shen WZ. J Nanosci Nanotechnol; 2008 Dec 02; 8(12):6325-31. PubMed ID: 19205201 [Abstract] [Full Text] [Related]
20. Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process. Zhu H, Iqbal J, Xu H, Yu D. J Chem Phys; 2008 Sep 28; 129(12):124713. PubMed ID: 19045054 [Abstract] [Full Text] [Related] Page: [Next] [New Search]