These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


168 related items for PubMed ID: 16852293

  • 1. Carbothermal chemical vapor deposition route to Se one-dimensional nanostructures and their optical properties.
    Zhang H, Zuo M, Tan S, Li G, Zhang S, Hou J.
    J Phys Chem B; 2005 Jun 02; 109(21):10653-7. PubMed ID: 16852293
    [Abstract] [Full Text] [Related]

  • 2. Morphology-controlled synthesis of ZnO nanostructures by a simple round-to-round metal vapor deposition route.
    Shen G, Bando Y, Chen D, Liu B, Zhi C, Golberg D.
    J Phys Chem B; 2006 Mar 09; 110(9):3973-8. PubMed ID: 16509685
    [Abstract] [Full Text] [Related]

  • 3. Photoluminescence and Raman scattering from catalytically grown Zn(x)Cd(1-x)Se alloy nanowires.
    Venugopal R, Lin PI, Chen YT.
    J Phys Chem B; 2006 Jun 22; 110(24):11691-6. PubMed ID: 16800464
    [Abstract] [Full Text] [Related]

  • 4. Synthesis of long indium nitride nanowires with uniform diameters in large quantities.
    Luo S, Zhou W, Zhang Z, Liu L, Dou X, Wang J, Zhao X, Liu D, Gao Y, Song L, Xiang Y, Zhou J, Xie S.
    Small; 2005 Oct 22; 1(10):1004-9. PubMed ID: 17193386
    [Abstract] [Full Text] [Related]

  • 5. High-quality ultralong Sb2Se3 and Sb2S3 nanoribbons on a large scale via a simple chemical route.
    Yu Y, Wang RH, Chen Q, Peng LM.
    J Phys Chem B; 2006 Jul 13; 110(27):13415-9. PubMed ID: 16821864
    [Abstract] [Full Text] [Related]

  • 6. Controlled synthesis and photoluminescence properties of ZnS nanowires and nanoribbons.
    Kar S, Chaudhuri S.
    J Phys Chem B; 2005 Mar 03; 109(8):3298-302. PubMed ID: 16851356
    [Abstract] [Full Text] [Related]

  • 7. Growth and luminescence of ternary semiconductor ZnCdSe nanowires by metalorganic chemical vapor deposition.
    Zhang XT, Liu Z, Li Q, Hark SK.
    J Phys Chem B; 2005 Sep 29; 109(38):17913-6. PubMed ID: 16853298
    [Abstract] [Full Text] [Related]

  • 8. Fabrication and photoluminescence of high-quality ternary CdSSe nanowires and nanoribbons.
    Pan A, Yang H, Yu R, Zou B.
    Nanotechnology; 2006 Feb 28; 17(4):1083-6. PubMed ID: 21727385
    [Abstract] [Full Text] [Related]

  • 9. Controllable synthesis and optical properties of connected zinc oxide nanoparticles.
    Wu W, Xiao X, Peng T, Jiang C.
    Chem Asian J; 2010 Feb 01; 5(2):315-21. PubMed ID: 20029892
    [Abstract] [Full Text] [Related]

  • 10. Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis.
    Li Q, Walter EC, van der Veer WE, Murray BJ, Newberg JT, Bohannan EW, Switzer JA, Hemminger JC, Penner RM.
    J Phys Chem B; 2005 Mar 03; 109(8):3169-82. PubMed ID: 16851337
    [Abstract] [Full Text] [Related]

  • 11. Shape selective growth of CdS one-dimensional nanostructures by a thermal evaporation process.
    Kar S, Chaudhuri S.
    J Phys Chem B; 2006 Mar 16; 110(10):4542-7. PubMed ID: 16526682
    [Abstract] [Full Text] [Related]

  • 12. Systematic investigation of the formation of 1D alpha-Si(3)N(4) nanostructures by using a thermal-decomposition/nitridation process.
    Shen G, Bando Y, Liu B, Tang C, Huang Q, Golberg D.
    Chemistry; 2006 Apr 03; 12(11):2987-93. PubMed ID: 16429469
    [Abstract] [Full Text] [Related]

  • 13. Atmospheric pressure chemical vapor deposition: an alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers.
    Li XL, Ge JP, Li YD.
    Chemistry; 2004 Nov 19; 10(23):6163-71. PubMed ID: 15515074
    [Abstract] [Full Text] [Related]

  • 14. Preparation and properties of ternary ZnMgO nanowires.
    Zhi M, Zhu L, Ye Z, Wang F, Zhao B.
    J Phys Chem B; 2005 Dec 22; 109(50):23930-4. PubMed ID: 16375380
    [Abstract] [Full Text] [Related]

  • 15. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods.
    Singh N, Zhang T, Lee PS.
    Nanotechnology; 2009 May 13; 20(19):195605. PubMed ID: 19420644
    [Abstract] [Full Text] [Related]

  • 16. Metal phthalocyanine nanoribbons and nanowires.
    Tong WY, Djurisić AB, Xie MH, Ng AC, Cheung KY, Chan WK, Leung YH, Lin HW, Gwo S.
    J Phys Chem B; 2006 Sep 07; 110(35):17406-13. PubMed ID: 16942077
    [Abstract] [Full Text] [Related]

  • 17. Large-area highly-oriented SiC nanowire arrays: synthesis, Raman, and photoluminescence properties.
    Li Z, Zhang J, Meng A, Guo J.
    J Phys Chem B; 2006 Nov 16; 110(45):22382-6. PubMed ID: 17091978
    [Abstract] [Full Text] [Related]

  • 18. Vapor-solid growth of Sn nanowires: growth mechanism and superconductivity.
    Hsu YJ, Lu SY.
    J Phys Chem B; 2005 Mar 17; 109(10):4398-403. PubMed ID: 16851508
    [Abstract] [Full Text] [Related]

  • 19. Gold-catalyzed low-temperature growth of cadmium oxide nanowires by vapor transport.
    Kuo TJ, Huang MH.
    J Phys Chem B; 2006 Jul 20; 110(28):13717-21. PubMed ID: 16836315
    [Abstract] [Full Text] [Related]

  • 20. Synthesis of selenium nanowires morphologically directed by Sinorhizobial oligosaccharides.
    Lee S, Kwon C, Park B, Jung S.
    Carbohydr Res; 2009 Jul 06; 344(10):1230-4. PubMed ID: 19439268
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.