These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


537 related items for PubMed ID: 16853946

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. DFT/electrostatic calculations of pK(a) values in cytochrome c oxidase.
    Popović DM, Quenneville J, Stuchebrukhov AA.
    J Phys Chem B; 2005 Mar 03; 109(8):3616-26. PubMed ID: 16851400
    [Abstract] [Full Text] [Related]

  • 3. Two conformational states of Glu242 and pKas in bovine cytochrome c oxidase.
    Popovic DM, Stuchebrukhov AA.
    Photochem Photobiol Sci; 2006 Jun 03; 5(6):611-20. PubMed ID: 16761090
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Proton pumping mechanism and catalytic cycle of cytochrome c oxidase: Coulomb pump model with kinetic gating.
    Popović DM, Stuchebrukhov AA.
    FEBS Lett; 2004 May 21; 566(1-3):126-30. PubMed ID: 15147881
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Electrostatic study of the proton pumping mechanism in bovine heart cytochrome C oxidase.
    Popović DM, Stuchebrukhov AA.
    J Am Chem Soc; 2004 Feb 18; 126(6):1858-71. PubMed ID: 14871119
    [Abstract] [Full Text] [Related]

  • 9. Vibrational resonances and CuB displacement controlled by proton motion in cytochrome c oxidase.
    Daskalakis V, Farantos SC, Guallar V, Varotsis C.
    J Phys Chem B; 2010 Jan 21; 114(2):1136-43. PubMed ID: 19961168
    [Abstract] [Full Text] [Related]

  • 10. Microscopic pKa analysis of Glu286 in cytochrome c oxidase (Rhodobacter sphaeroides): toward a calibrated molecular model.
    Ghosh N, Prat-Resina X, Gunner MR, Cui Q.
    Biochemistry; 2009 Mar 24; 48(11):2468-85. PubMed ID: 19243111
    [Abstract] [Full Text] [Related]

  • 11. Model studies of the Cu(B) site of cytochrome c oxidase utilizing a Zn(II) complex containing an imidazole-phenol cross-linked ligand.
    Pesavento RP, Pratt DA, Jeffers J, van der Donk WA.
    Dalton Trans; 2006 Jul 21; (27):3326-37. PubMed ID: 16820845
    [Abstract] [Full Text] [Related]

  • 12. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase.
    Okuno D, Iwase T, Shinzawa-Itoh K, Yoshikawa S, Kitagawa T.
    J Am Chem Soc; 2003 Jun 18; 125(24):7209-18. PubMed ID: 12797794
    [Abstract] [Full Text] [Related]

  • 13. Could redox-switched binding of a redox-active ligand to a copper(II) centre drive a conformational proton pump gate? A synthetic model study.
    He Z, Colbran SB, Craig DC.
    Chemistry; 2003 Jan 03; 9(1):116-29. PubMed ID: 12506370
    [Abstract] [Full Text] [Related]

  • 14. Improved density functional theory/electrostatic calculation of the His291 protonation state in cytochrome C oxidase: self-consistent charges for solvation energy calculation.
    Makhov DV, Popović DM, Stuchebrukhov AA.
    J Phys Chem B; 2006 Jun 22; 110(24):12162-6. PubMed ID: 16800531
    [Abstract] [Full Text] [Related]

  • 15. Cu XAS shows a change in the ligation of CuB upon reduction of cytochrome bo3 from Escherichia coli.
    Osborne JP, Cosper NJ, Stälhandske CM, Scott RA, Alben JO, Gennis RB.
    Biochemistry; 1999 Apr 06; 38(14):4526-32. PubMed ID: 10194374
    [Abstract] [Full Text] [Related]

  • 16. Proton exit channels in bovine cytochrome c oxidase.
    Popović DM, Stuchebrukhov AA.
    J Phys Chem B; 2005 Feb 10; 109(5):1999-2006. PubMed ID: 16851184
    [Abstract] [Full Text] [Related]

  • 17. Effects of mutation of the conserved lysine-362 in cytochrome c oxidase from Rhodobacter sphaeroides.
    Jünemann S, Meunier B, Gennis RB, Rich PR.
    Biochemistry; 1997 Nov 25; 36(47):14456-64. PubMed ID: 9398164
    [Abstract] [Full Text] [Related]

  • 18. Effects of metal ions in the CuB center on the redox properties of heme in heme-copper oxidases: spectroelectrochemical studies of an engineered heme-copper center in myoglobin.
    Zhao X, Yeung N, Wang Z, Guo Z, Lu Y.
    Biochemistry; 2005 Feb 01; 44(4):1210-4. PubMed ID: 15667214
    [Abstract] [Full Text] [Related]

  • 19. G204D, a mutation that blocks the proton-conducting D-channel of the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides.
    Han D, Morgan JE, Gennis RB.
    Biochemistry; 2005 Sep 27; 44(38):12767-74. PubMed ID: 16171391
    [Abstract] [Full Text] [Related]

  • 20. Intramolecular proton-transfer reactions in a membrane-bound proton pump: the effect of pH on the peroxy to ferryl transition in cytochrome c oxidase.
    Namslauer A, Aagaard A, Katsonouri A, Brzezinski P.
    Biochemistry; 2003 Feb 18; 42(6):1488-98. PubMed ID: 12578361
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.