These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


403 related items for PubMed ID: 16859653

  • 1. Differential motor and electrophysiological outcome in rats with mid-thoracic or high lumbar incomplete spinal cord injuries.
    García-Alías G, Valero-Cabré A, López-Vales R, Forés J, Verdú E, Navarro X.
    Brain Res; 2006 Sep 07; 1108(1):195-204. PubMed ID: 16859653
    [Abstract] [Full Text] [Related]

  • 2. Functional involvement of the lumbar spinal cord after contusion to T8 spinal segment of the rat.
    García-Alías G, Torres-Espín A, Vallejo C, Navarro X.
    Restor Neurol Neurosci; 2010 Sep 07; 28(6):781-92. PubMed ID: 21209493
    [Abstract] [Full Text] [Related]

  • 3. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat.
    García-Alías G, López-Vales R, Forés J, Navarro X, Verdú E.
    J Neurosci Res; 2004 Mar 01; 75(5):632-41. PubMed ID: 14991839
    [Abstract] [Full Text] [Related]

  • 4. Functional consequences of lumbar spinal cord contusion injuries in the adult rat.
    Magnuson DS, Lovett R, Coffee C, Gray R, Han Y, Zhang YP, Burke DA.
    J Neurotrauma; 2005 May 01; 22(5):529-43. PubMed ID: 15892599
    [Abstract] [Full Text] [Related]

  • 5. Motoneuron loss associated with chronic locomotion impairments after spinal cord contusion in the rat.
    Collazos-Castro JE, Soto VM, Gutiérrez-Dávila M, Nieto-Sampedro M.
    J Neurotrauma; 2005 May 01; 22(5):544-58. PubMed ID: 15892600
    [Abstract] [Full Text] [Related]

  • 6. [MEPs by transcranical magnetic stimulation in experimental acute spinal cord injury].
    Kawakita H, Kameyama O, Ogawa R, Tsubura A.
    Nihon Seikeigeka Gakkai Zasshi; 1995 Dec 01; 69(12):1268-77. PubMed ID: 8586912
    [Abstract] [Full Text] [Related]

  • 7. Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transection in the rat.
    López-Vales R, Forés J, Navarro X, Verdú E.
    Glia; 2007 Feb 01; 55(3):303-11. PubMed ID: 17096411
    [Abstract] [Full Text] [Related]

  • 8. Regenerating motor bridge axons refine connections and synapse on lumbar motoneurons to bypass chronic spinal cord injury.
    Campos LW, Chakrabarty S, Haque R, Martin JH.
    J Comp Neurol; 2008 Feb 10; 506(5):838-50. PubMed ID: 18076081
    [Abstract] [Full Text] [Related]

  • 9. Transplants of fibroblasts expressing BDNF and NT-3 promote recovery of bladder and hindlimb function following spinal contusion injury in rats.
    Mitsui T, Fischer I, Shumsky JS, Murray M.
    Exp Neurol; 2005 Aug 10; 194(2):410-31. PubMed ID: 16022868
    [Abstract] [Full Text] [Related]

  • 10. Comparing deficits following excitotoxic and contusion injuries in the thoracic and lumbar spinal cord of the adult rat.
    Magnuson DS, Trinder TC, Zhang YP, Burke D, Morassutti DJ, Shields CB.
    Exp Neurol; 1999 Mar 10; 156(1):191-204. PubMed ID: 10192790
    [Abstract] [Full Text] [Related]

  • 11. Better functional outcome of compression spinal cord injury in mice is associated with enhanced H-reflex responses.
    Lee HJ, Jakovcevski I, Radonjic N, Hoelters L, Schachner M, Irintchev A.
    Exp Neurol; 2009 Apr 10; 216(2):365-74. PubMed ID: 19150614
    [Abstract] [Full Text] [Related]

  • 12. Reorganization of reflex responses mediated by different afferent sensory fibers after spinal cord transection.
    Valero-Cabré A, Forés J, Navarro X.
    J Neurophysiol; 2004 Jun 10; 91(6):2838-48. PubMed ID: 14762160
    [Abstract] [Full Text] [Related]

  • 13. Dynamics of early locomotor network dysfunction following a focal lesion in an in vitro model of spinal injury.
    Taccola G, Mladinic M, Nistri A.
    Eur J Neurosci; 2010 Jan 10; 31(1):60-78. PubMed ID: 20092556
    [Abstract] [Full Text] [Related]

  • 14. Kainate and metabolic perturbation mimicking spinal injury differentially contribute to early damage of locomotor networks in the in vitro neonatal rat spinal cord.
    Taccola G, Margaryan G, Mladinic M, Nistri A.
    Neuroscience; 2008 Aug 13; 155(2):538-55. PubMed ID: 18602453
    [Abstract] [Full Text] [Related]

  • 15. Recording of spared motor evoked potentials and its augmentation by 4-aminopyridine in chronic spinal cord-injured rats.
    Yu K, Li J, Rong W, Jia L, Yuan W, Ye X, Shi Z, Dai B.
    Chin Med J (Engl); 2001 Feb 13; 114(2):155-61. PubMed ID: 11780197
    [Abstract] [Full Text] [Related]

  • 16. Locomotor deficits and adaptive mechanisms after thoracic spinal cord contusion in the adult rat.
    Collazos-Castro JE, López-Dolado E, Nieto-Sampedro M.
    J Neurotrauma; 2006 Jan 13; 23(1):1-17. PubMed ID: 16430369
    [Abstract] [Full Text] [Related]

  • 17. Functional and electrophysiological changes after graded traumatic spinal cord injury in adult rat.
    Cao Q, Zhang YP, Iannotti C, DeVries WH, Xu XM, Shields CB, Whittemore SR.
    Exp Neurol; 2005 Feb 13; 191 Suppl 1():S3-S16. PubMed ID: 15629760
    [Abstract] [Full Text] [Related]

  • 18. Longitudinal Evaluation of Residual Cortical and Subcortical Motor Evoked Potentials in Spinal Cord Injured Rats.
    Redondo-Castro E, Navarro X, García-Alías G.
    J Neurotrauma; 2016 May 15; 33(10):907-16. PubMed ID: 26560177
    [Abstract] [Full Text] [Related]

  • 19. The effects from lumbar nerve root transection in rats on spinal somatosensory and motor-evoked potentials.
    Jou IM.
    Spine (Phila Pa 1976); 2004 Jan 15; 29(2):147-55. PubMed ID: 14722405
    [Abstract] [Full Text] [Related]

  • 20. Methylprednisolone fails to improve functional and histological outcome following spinal cord injury in rats.
    Pereira JE, Costa LM, Cabrita AM, Couto PA, Filipe VM, Magalhães LG, Fornaro M, Di Scipio F, Geuna S, Maurício AC, Varejão AS.
    Exp Neurol; 2009 Nov 15; 220(1):71-81. PubMed ID: 19665461
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.