These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


156 related items for PubMed ID: 16860925

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Robustness against mutations in genetic networks of yeast.
    Wagner A.
    Nat Genet; 2000 Apr; 24(4):355-61. PubMed ID: 10742097
    [Abstract] [Full Text] [Related]

  • 3. Computational architecture of the yeast regulatory network.
    Maslov S, Sneppen K.
    Phys Biol; 2005 Nov 09; 2(4):S94-100. PubMed ID: 16280626
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Functional and evolutionary inference in gene networks: does topology matter?
    Siegal ML, Promislow DE, Bergman A.
    Genetica; 2007 Jan 09; 129(1):83-103. PubMed ID: 16897451
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Molecular evolution in the yeast transcriptional regulation network.
    Evangelisti AM, Wagner A.
    J Exp Zool B Mol Dev Evol; 2004 Jul 15; 302(4):392-411. PubMed ID: 15287103
    [Abstract] [Full Text] [Related]

  • 10. A regulatory network analysis of phenotypic plasticity in yeast.
    Promislow D.
    Am Nat; 2005 May 15; 165(5):515-23. PubMed ID: 15795849
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Topological and causal structure of the yeast transcriptional regulatory network.
    Guelzim N, Bottani S, Bourgine P, Képès F.
    Nat Genet; 2002 May 15; 31(1):60-3. PubMed ID: 11967534
    [Abstract] [Full Text] [Related]

  • 13. Network topology and the evolution of dynamics in an artificial genetic regulatory network model created by whole genome duplication and divergence.
    Dwight Kuo P, Banzhaf W, Leier A.
    Biosystems; 2006 Sep 15; 85(3):177-200. PubMed ID: 16650928
    [Abstract] [Full Text] [Related]

  • 14. Molecular mechanisms involved in robustness of yeast central metabolism against null mutations.
    Maltsev N, Glass EM, Ovchinnikova G, Gu Z.
    J Biochem; 2005 Feb 15; 137(2):177-87. PubMed ID: 15749832
    [Abstract] [Full Text] [Related]

  • 15. Feed-forward loop circuits as a side effect of genome evolution.
    Cordero OX, Hogeweg P.
    Mol Biol Evol; 2006 Oct 15; 23(10):1931-6. PubMed ID: 16840361
    [Abstract] [Full Text] [Related]

  • 16. Origins of extrinsic variability in eukaryotic gene expression.
    Volfson D, Marciniak J, Blake WJ, Ostroff N, Tsimring LS, Hasty J.
    Nature; 2006 Feb 16; 439(7078):861-4. PubMed ID: 16372021
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Role of duplicate genes in genetic robustness against null mutations.
    Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH.
    Nature; 2003 Jan 02; 421(6918):63-6. PubMed ID: 12511954
    [Abstract] [Full Text] [Related]

  • 19. Simulating the evolution of signal transduction pathways.
    Soyer OS, Pfeiffer T, Bonhoeffer S.
    J Theor Biol; 2006 Jul 21; 241(2):223-32. PubMed ID: 16403533
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.