These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
177 related items for PubMed ID: 16863199
1. Theoretical study of internal field effects on peptide amide I modes. Lee H, Kim SS, Choi JH, Cho M. J Phys Chem B; 2005 Mar 24; 109(11):5331-40. PubMed ID: 16863199 [Abstract] [Full Text] [Related]
2. Amide I vibrational circular dichroism of dipeptide: Conformation dependence and fragment analysis. Choi JH, Cho M. J Chem Phys; 2004 Mar 01; 120(9):4383-92. PubMed ID: 15268607 [Abstract] [Full Text] [Related]
3. Side chain dependence of intensity and wavenumber position of amide I' in IR and visible Raman spectra of XA and AX dipeptides. Measey T, Hagarman A, Eker F, Griebenow K, Schweitzer-Stenner R. J Phys Chem B; 2005 Apr 28; 109(16):8195-205. PubMed ID: 16851958 [Abstract] [Full Text] [Related]
4. Molecular mechanics force field-based map for peptide amide-I mode in solution and its application to alanine di- and tripeptides. Cai K, Han C, Wang J. Phys Chem Chem Phys; 2009 Oct 28; 11(40):9149-59. PubMed ID: 19812835 [Abstract] [Full Text] [Related]
10. Assessment of the amide-I local modes in gamma- and beta-turns of peptides. Wang J. Phys Chem Chem Phys; 2009 Jul 14; 11(26):5310-22. PubMed ID: 19551198 [Abstract] [Full Text] [Related]
11. Amide I vibrational circular dichroism of polypeptides: generalized fragmentation approximation method. Choi JH, Kim JS, Cho M. J Chem Phys; 2005 May 01; 122(17):174903. PubMed ID: 15910065 [Abstract] [Full Text] [Related]
12. Amide I Raman optical activity of polypeptides: fragment approximation. Choi JH, Cho M. J Chem Phys; 2009 Jan 07; 130(1):014503. PubMed ID: 19140618 [Abstract] [Full Text] [Related]
13. Toward detecting the formation of a single helical turn by 2D IR cross peaks between the amide-I and -II modes. Maekawa H, De Poli M, Moretto A, Toniolo C, Ge NH. J Phys Chem B; 2009 Aug 27; 113(34):11775-86. PubMed ID: 19642666 [Abstract] [Full Text] [Related]
14. Vibrational spectral simulation for peptides of mixed secondary structure: method comparisons with the Trpzip model hairpin. Bour P, Keiderling TA. J Phys Chem B; 2005 Dec 15; 109(49):23687-97. PubMed ID: 16375349 [Abstract] [Full Text] [Related]
15. Infrared and vibrational CD spectra of partially solvated alpha-helices: DFT-based simulations with explicit solvent. Turner DR, Kubelka J. J Phys Chem B; 2007 Feb 22; 111(7):1834-45. PubMed ID: 17256894 [Abstract] [Full Text] [Related]
16. Computational spectroscopy of ubiquitin: comparison between theory and experiments. Choi JH, Lee H, Lee KK, Hahn S, Cho M. J Chem Phys; 2007 Jan 28; 126(4):045102. PubMed ID: 17286512 [Abstract] [Full Text] [Related]
17. Nature of vibrational coupling in helical peptides: an isotopic labeling study. Huang R, Kubelka J, Barber-Armstrong W, Silva RA, Decatur SM, Keiderling TA. J Am Chem Soc; 2004 Mar 03; 126(8):2346-54. PubMed ID: 14982438 [Abstract] [Full Text] [Related]
19. Dipeptide structure determination by vibrational circular dichroism combined with quantum chemistry calculations. Lee KK, Oh KI, Lee H, Joo C, Han H, Cho M. Chemphyschem; 2007 Oct 22; 8(15):2218-26. PubMed ID: 17876752 [Abstract] [Full Text] [Related]