These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
925 related items for PubMed ID: 16863358
1. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice. Vega C, Abascal JL, Nezbeda I. J Chem Phys; 2006 Jul 21; 125(3):34503. PubMed ID: 16863358 [Abstract] [Full Text] [Related]
2. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point. Horn HW, Swope WC, Pitera JW. J Chem Phys; 2005 Nov 15; 123(19):194504. PubMed ID: 16321097 [Abstract] [Full Text] [Related]
3. The melting temperature of the most common models of water. Vega C, Sanz E, Abascal JL. J Chem Phys; 2005 Mar 15; 122(11):114507. PubMed ID: 15836229 [Abstract] [Full Text] [Related]
4. Surface tension of the most popular models of water by using the test-area simulation method. Vega C, de Miguel E. J Chem Phys; 2007 Apr 21; 126(15):154707. PubMed ID: 17461659 [Abstract] [Full Text] [Related]
5. Melting temperature of ice Ih calculated from coexisting solid-liquid phases. Wang J, Yoo S, Bai J, Morris JR, Zeng XC. J Chem Phys; 2005 Jul 15; 123(3):36101. PubMed ID: 16080767 [Abstract] [Full Text] [Related]
6. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface. García Fernández R, Abascal JL, Vega C. J Chem Phys; 2006 Apr 14; 124(14):144506. PubMed ID: 16626213 [Abstract] [Full Text] [Related]
7. Vapor-liquid and vapor-solid phase equilibria for united-atom benzene models near their triple points: the importance of quadrupolar interactions. Zhao XS, Chen B, Karaborni S, Siepmann JI. J Phys Chem B; 2005 Mar 24; 109(11):5368-74. PubMed ID: 16863203 [Abstract] [Full Text] [Related]
8. Limitations of the rigid planar nonpolarizable models of water. Baranyai A, Bartók A, Chialvo AA. J Chem Phys; 2006 Feb 21; 124(7):74507. PubMed ID: 16497057 [Abstract] [Full Text] [Related]
9. The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase. Aragones JL, Conde MM, Noya EG, Vega C. Phys Chem Chem Phys; 2009 Jan 21; 11(3):543-55. PubMed ID: 19283272 [Abstract] [Full Text] [Related]
10. Determining the three-phase coexistence line in methane hydrates using computer simulations. Conde MM, Vega C. J Chem Phys; 2010 Aug 14; 133(6):064507. PubMed ID: 20707575 [Abstract] [Full Text] [Related]
11. The phase diagram of water at negative pressures: virtual ices. Conde MM, Vega C, Tribello GA, Slater B. J Chem Phys; 2009 Jul 21; 131(3):034510. PubMed ID: 19624212 [Abstract] [Full Text] [Related]
12. Relation between the melting temperature and the temperature of maximum density for the most common models of water. Vega C, Abascal JL. J Chem Phys; 2005 Oct 08; 123(14):144504. PubMed ID: 16238404 [Abstract] [Full Text] [Related]
13. Molecular dynamics simulations of vapor/liquid coexistence using the nonpolarizable water models. Sakamaki R, Sum AK, Narumi T, Yasuoka K. J Chem Phys; 2011 Mar 28; 134(12):124708. PubMed ID: 21456696 [Abstract] [Full Text] [Related]
14. Liquid-liquid phase transitions in supercooled water studied by computer simulations of various water models. Brovchenko I, Geiger A, Oleinikova A. J Chem Phys; 2005 Jul 22; 123(4):044515. PubMed ID: 16095377 [Abstract] [Full Text] [Related]
15. Melting point and phase diagram of methanol as obtained from computer simulations of the OPLS model. Gonzalez Salgado D, Vega C. J Chem Phys; 2010 Mar 07; 132(9):094505. PubMed ID: 20210403 [Abstract] [Full Text] [Related]
16. Computer simulation of two new solid phases of water: Ice XIII and ice XIV. Martin-Conde M, MacDowell LG, Vega C. J Chem Phys; 2006 Sep 21; 125(11):116101. PubMed ID: 16999507 [Abstract] [Full Text] [Related]
17. A potential model for the study of ices and amorphous water: TIP4P/Ice. Abascal JL, Sanz E, García Fernández R, Vega C. J Chem Phys; 2005 Jun 15; 122(23):234511. PubMed ID: 16008466 [Abstract] [Full Text] [Related]
18. The thickness of a liquid layer on the free surface of ice as obtained from computer simulation. Conde MM, Vega C, Patrykiejew A. J Chem Phys; 2008 Jul 07; 129(1):014702. PubMed ID: 18624491 [Abstract] [Full Text] [Related]
19. Capillary waves at the liquid-vapor interface and the surface tension of water. Ismail AE, Grest GS, Stevens MJ. J Chem Phys; 2006 Jul 07; 125(1):014702. PubMed ID: 16863319 [Abstract] [Full Text] [Related]
20. Properties of ices at 0 K: a test of water models. Aragones JL, Noya EG, Abascal JL, Vega C. J Chem Phys; 2007 Oct 21; 127(15):154518. PubMed ID: 17949184 [Abstract] [Full Text] [Related] Page: [Next] [New Search]