These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
235 related items for PubMed ID: 16868746
1. Dysregulation of muscle fatty acid metabolism in type 2 diabetes is independent of malonyl-CoA. Bell JA, Volpi E, Fujita S, Cadenas JG, Rasmussen BB. Diabetologia; 2006 Sep; 49(9):2144-52. PubMed ID: 16868746 [Abstract] [Full Text] [Related]
9. Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of Type 2 diabetic patients. Debard C, Laville M, Berbe V, Loizon E, Guillet C, Morio-Liondore B, Boirie Y, Vidal H. Diabetologia; 2004 May; 47(5):917-25. PubMed ID: 15127202 [Abstract] [Full Text] [Related]
10. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ. Science; 2001 Mar 30; 291(5513):2613-6. PubMed ID: 11283375 [Abstract] [Full Text] [Related]
11. Insulin fails to alter plasma LCFA metabolism in muscle perfused at similar glucose uptake. Yee AJ, Turcotte LP. Am J Physiol Endocrinol Metab; 2002 Jul 30; 283(1):E73-7. PubMed ID: 12067845 [Abstract] [Full Text] [Related]
12. Heterogeneity in limb fatty acid kinetics in type 2 diabetes. Sacchetti M, Olsen DB, Saltin B, van Hall G. Diabetologia; 2005 May 30; 48(5):938-45. PubMed ID: 15830181 [Abstract] [Full Text] [Related]
13. Muscle oxidative capacity is a better predictor of insulin sensitivity than lipid status. Bruce CR, Anderson MJ, Carey AL, Newman DG, Bonen A, Kriketos AD, Cooney GJ, Hawley JA. J Clin Endocrinol Metab; 2003 Nov 30; 88(11):5444-51. PubMed ID: 14602787 [Abstract] [Full Text] [Related]
14. Thiazolidinediones upregulate impaired fatty acid uptake in skeletal muscle of type 2 diabetic subjects. Wilmsen HM, Ciaraldi TP, Carter L, Reehman N, Mudaliar SR, Henry RR. Am J Physiol Endocrinol Metab; 2003 Aug 30; 285(2):E354-62. PubMed ID: 12700163 [Abstract] [Full Text] [Related]
15. LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle. Thomson DM, Brown JD, Fillmore N, Condon BM, Kim HJ, Barrow JR, Winder WW. Am J Physiol Endocrinol Metab; 2007 Dec 30; 293(6):E1572-9. PubMed ID: 17925454 [Abstract] [Full Text] [Related]
16. Hyperthyroidism facilitates cardiac fatty acid oxidation through altered regulation of cardiac carnitine palmitoyltransferase: studies in vivo and with cardiac myocytes. Sugden MC, Priestman DA, Orfali KA, Holness MJ. Horm Metab Res; 1999 May 30; 31(5):300-6. PubMed ID: 10422724 [Abstract] [Full Text] [Related]
17. Effect of glucose infusion on muscle malonyl-CoA during exercise. Elayan IM, Winder WW. J Appl Physiol (1985); 1991 Apr 30; 70(4):1495-9. PubMed ID: 2055826 [Abstract] [Full Text] [Related]
18. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Tomas E, Tsao TS, Saha AK, Murrey HE, Zhang Cc Cc, Itani SI, Lodish HF, Ruderman NB. Proc Natl Acad Sci U S A; 2002 Dec 10; 99(25):16309-13. PubMed ID: 12456889 [Abstract] [Full Text] [Related]
19. Malonyl CoA control of fatty acid oxidation in the newborn heart in response to increased fatty acid supply. Onay-Besikci A, Sambandam N. Can J Physiol Pharmacol; 2006 Nov 10; 84(11):1215-22. PubMed ID: 17218986 [Abstract] [Full Text] [Related]
20. Insulin signalling in skeletal muscle of subjects with or without Type II-diabetes and first degree relatives of patients with the disease. Meyer MM, Levin K, Grimmsmann T, Beck-Nielsen H, Klein HH. Diabetologia; 2002 Jun 10; 45(6):813-22. PubMed ID: 12107725 [Abstract] [Full Text] [Related] Page: [Next] [New Search]