These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
163 related items for PubMed ID: 16870405
1. Effect of 2,6-di-O-methyl-alpha-cyclodextrin on hemolysis and morphological change in rabbit's red blood cells. Motoyama K, Arima H, Toyodome H, Irie T, Hirayama F, Uekama K. Eur J Pharm Sci; 2006 Oct 01; 29(2):111-9. PubMed ID: 16870405 [Abstract] [Full Text] [Related]
2. Involvement of PI3K-Akt-Bad pathway in apoptosis induced by 2,6-di-O-methyl-beta-cyclodextrin, not 2,6-di-O-methyl-alpha-cyclodextrin, through cholesterol depletion from lipid rafts on plasma membranes in cells. Motoyama K, Kameyama K, Onodera R, Araki N, Hirayama F, Uekama K, Arima H. Eur J Pharm Sci; 2009 Oct 08; 38(3):249-61. PubMed ID: 19664706 [Abstract] [Full Text] [Related]
3. Involvement of lipid rafts of rabbit red blood cells in morphological changes induced by methylated beta-cyclodextrins. Motoyama K, Toyodome H, Onodera R, Irie T, Hirayama F, Uekama K, Arima H. Biol Pharm Bull; 2009 Apr 08; 32(4):700-5. PubMed ID: 19336908 [Abstract] [Full Text] [Related]
4. Involvement of CD14 in the inhibitory effects of dimethyl-alpha-cyclodextrin on lipopolysaccharide signaling in macrophages. Motoyama K, Arima H, Nishimoto Y, Miyake K, Hirayama F, Uekama K. FEBS Lett; 2005 Mar 14; 579(7):1707-14. PubMed ID: 15757665 [Abstract] [Full Text] [Related]
9. Cyclodextrin-induced hemolysis and shape changes of human erythrocytes in vitro. Irie T, Otagiri M, Sunada M, Uekama K, Ohtani Y, Yamada Y, Sugiyama Y. J Pharmacobiodyn; 1982 Sep 14; 5(9):741-4. PubMed ID: 7153847 [Abstract] [Full Text] [Related]
10. Differential effects of sulfate and sulfobutyl ether of beta-cyclodextrin on erythrocyte membranes in vitro. Shiotani K, Uehata K, Irie T, Uekama K, Thompson DO, Stella VJ. Pharm Res; 1995 Jan 14; 12(1):78-84. PubMed ID: 7724491 [Abstract] [Full Text] [Related]
11. Release characteristics of endogenous constituents by exposure of small intestine to modified beta-cyclodextrins. Tanino T, Ogiso T, Iwaki M, Yamaguchi T, Kakehi K. Biol Pharm Bull; 1999 Oct 14; 22(10):1099-105. PubMed ID: 10549863 [Abstract] [Full Text] [Related]
12. Polypseudorotaxanes of pegylated α-cyclodextrin/polyamidoamine dendrimer conjugate with cyclodextrins as a sustained release system for DNA. Motoyama K, Hayashida K, Higashi T, Arima H. Bioorg Med Chem; 2012 Feb 15; 20(4):1425-33. PubMed ID: 22277591 [Abstract] [Full Text] [Related]
13. Influence of modified cyclodextrins on solubility and percutaneous absorption of celecoxib through human skin. Ventura CA, Tommasini S, Falcone A, Giannone I, Paolino D, Sdrafkakis V, Mondello MR, Puglisi G. Int J Pharm; 2006 May 11; 314(1):37-45. PubMed ID: 16581211 [Abstract] [Full Text] [Related]
15. Characterization of the inclusion mode of beta-cyclodextrin sulfate and its effect on the chlorpromazine-induced hemolysis of rabbit erythrocytes. Shiotani K, Uehata K, Irie T, Hirayama F, Uekama K. Chem Pharm Bull (Tokyo); 1994 Nov 11; 42(11):2332-7. PubMed ID: 7859332 [Abstract] [Full Text] [Related]
16. Some pharmaceutical properties of 3-hydroxypropyl- and 2,3-dihydroxypropyl-beta-cyclodextrins and their solubilizing and stabilizing abilities. Yoshida A, Yamamoto M, Irie T, Hirayama F, Uekama K. Chem Pharm Bull (Tokyo); 1989 Apr 11; 37(4):1059-63. PubMed ID: 2766408 [Abstract] [Full Text] [Related]
17. Involvement of cholesterol in the inhibitory effect of dimethyl-beta-cyclodextrin on P-glycoprotein and MRP2 function in Caco-2 cells. Yunomae K, Arima H, Hirayama F, Uekama K. FEBS Lett; 2003 Feb 11; 536(1-3):225-31. PubMed ID: 12586368 [Abstract] [Full Text] [Related]