These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
118 related items for PubMed ID: 16871001
21. Mechanical demand and multijoint control during landing depend on orientation of the body segments relative to the reaction force. McNitt-Gray JL, Hester DM, Mathiyakom W, Munkasy BA. J Biomech; 2001 Nov; 34(11):1471-82. PubMed ID: 11672722 [Abstract] [Full Text] [Related]
22. Modelling the parallel bars in men's artistic gymnastics. Linge S, Hallingstad O, Solberg F. Hum Mov Sci; 2006 Apr; 25(2):221-37. PubMed ID: 16458380 [Abstract] [Full Text] [Related]
23. Agreement between force and deceleration measures during backward somersault landings. Bradshaw EJ, Grech K, Joseph CWJ, Calton M, Hume PA. Sports Biomech; 2023 Feb; 22(2):195-203. PubMed ID: 32308137 [Abstract] [Full Text] [Related]
24. Target-directed running in gymnastics: a preliminary exploration of vaulting. Bradshaw E. Sports Biomech; 2004 Jan; 3(1):125-44. PubMed ID: 15079992 [Abstract] [Full Text] [Related]
25. The margin for error when releasing the high bar for dismounts. Hiley MJ, Yeadon MR. J Biomech; 2003 Mar; 36(3):313-9. PubMed ID: 12594979 [Abstract] [Full Text] [Related]
26. Modeling and inverse simulation of somersaults on the trampoline. Blajer W, Czaplicki A. J Biomech; 2001 Dec; 34(12):1619-29. PubMed ID: 11716864 [Abstract] [Full Text] [Related]
29. Landing from different heights: Biomechanical and neuromuscular strategies in trained gymnasts and untrained prepubescent girls. Christoforidou Α, Patikas DA, Bassa E, Paraschos I, Lazaridis S, Christoforidis C, Kotzamanidis C. J Electromyogr Kinesiol; 2017 Feb; 32():1-8. PubMed ID: 27863284 [Abstract] [Full Text] [Related]
31. Model prediction of anterior cruciate ligament force during drop-landings. Pflum MA, Shelburne KB, Torry MR, Decker MJ, Pandy MG. Med Sci Sports Exerc; 2004 Nov; 36(11):1949-58. PubMed ID: 15514512 [Abstract] [Full Text] [Related]
32. Biomechanical analysis of circles on pommel horse. Fujihara T, Fuchimoto T, Gervais P. Sports Biomech; 2009 Mar; 8(1):22-38. PubMed ID: 19391492 [Abstract] [Full Text] [Related]
33. Effects of digital filtering on peak acceleration and force measurements for artistic gymnastics skills. Campbell RA, Bradshaw EJ, Ball N, Hunter A, Spratford W. J Sports Sci; 2020 Aug; 38(16):1859-1868. PubMed ID: 32329647 [Abstract] [Full Text] [Related]
34. Modelling biomechanical requirements of a rider for different horse-riding techniques at trot. de Cocq P, Muller M, Clayton HM, van Leeuwen JL. J Exp Biol; 2013 May 15; 216(Pt 10):1850-61. PubMed ID: 23785107 [Abstract] [Full Text] [Related]
36. Effect of ski boot rear stiffness (SBRS) on maximal ACL force during injury prone landing movements in alpine ski racing: A study with a musculoskeletal simulation model. Eberle R, Heinrich D, Kaps P, Oberguggenberger M, Nachbauer W. J Sports Sci; 2017 Jun 15; 35(12):1125-1133. PubMed ID: 27458775 [Abstract] [Full Text] [Related]
37. The influence of soft tissue movement on ground reaction forces, joint torques and joint reaction forces in drop landings. Pain MT, Challis JH. J Biomech; 2006 Jun 15; 39(1):119-24. PubMed ID: 16271595 [Abstract] [Full Text] [Related]
39. Towards a footwear design tool: influence of shoe midsole properties and ground stiffness on the impact force during running. Ly QH, Alaoui A, Erlicher S, Baly L. J Biomech; 2010 Jan 19; 43(2):310-7. PubMed ID: 19931083 [Abstract] [Full Text] [Related]