These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
598 related items for PubMed ID: 16872277
1. Negative regulation of the Nrf1 transcription factor by its N-terminal domain is independent of Keap1: Nrf1, but not Nrf2, is targeted to the endoplasmic reticulum. Zhang Y, Crouch DH, Yamamoto M, Hayes JD. Biochem J; 2006 Nov 01; 399(3):373-85. PubMed ID: 16872277 [Abstract] [Full Text] [Related]
2. Kelch-like ECH-associated protein 1 (KEAP1) differentially regulates nuclear factor erythroid-2-related factors 1 and 2 (NRF1 and NRF2). Tian W, Rojo de la Vega M, Schmidlin CJ, Ooi A, Zhang DD. J Biol Chem; 2018 Feb 09; 293(6):2029-2040. PubMed ID: 29255090 [Abstract] [Full Text] [Related]
3. Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome. Katoh Y, Iida K, Kang MI, Kobayashi A, Mizukami M, Tong KI, McMahon M, Hayes JD, Itoh K, Yamamoto M. Arch Biochem Biophys; 2005 Jan 15; 433(2):342-50. PubMed ID: 15581590 [Abstract] [Full Text] [Related]
4. The C-terminal domain of Nrf1 negatively regulates the full-length CNC-bZIP factor and its shorter isoform LCR-F1/Nrf1β; both are also inhibited by the small dominant-negative Nrf1γ/δ isoforms that down-regulate ARE-battery gene expression. Zhang Y, Qiu L, Li S, Xiang Y, Chen J, Ren Y. PLoS One; 2014 Jan 15; 9(10):e109159. PubMed ID: 25290918 [Abstract] [Full Text] [Related]
5. Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function. Wang W, Chan JY. J Biol Chem; 2006 Jul 14; 281(28):19676-87. PubMed ID: 16687406 [Abstract] [Full Text] [Related]
6. Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism. Velichkova M, Hasson T. Mol Cell Biol; 2005 Jun 14; 25(11):4501-13. PubMed ID: 15899855 [Abstract] [Full Text] [Related]
7. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD. J Biol Chem; 2004 Jul 23; 279(30):31556-67. PubMed ID: 15143058 [Abstract] [Full Text] [Related]
8. Identification of topological determinants in the N-terminal domain of transcription factor Nrf1 that control its orientation in the endoplasmic reticulum membrane. Zhang Y, Hayes JD. Biochem J; 2010 Sep 15; 430(3):497-510. PubMed ID: 20629635 [Abstract] [Full Text] [Related]
9. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, Yamamoto M. Mol Cell Biol; 2006 Apr 15; 26(8):2887-900. PubMed ID: 16581765 [Abstract] [Full Text] [Related]
10. Subcellular localization and cytoplasmic complex status of endogenous Keap1. Watai Y, Kobayashi A, Nagase H, Mizukami M, McEvoy J, Singer JD, Itoh K, Yamamoto M. Genes Cells; 2007 Oct 15; 12(10):1163-78. PubMed ID: 17903176 [Abstract] [Full Text] [Related]
11. KPNA6 (Importin {alpha}7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response. Sun Z, Wu T, Zhao F, Lau A, Birch CM, Zhang DD. Mol Cell Biol; 2011 May 15; 31(9):1800-11. PubMed ID: 21383067 [Abstract] [Full Text] [Related]
12. The NHB1 (N-terminal homology box 1) sequence in transcription factor Nrf1 is required to anchor it to the endoplasmic reticulum and also to enable its asparagine-glycosylation. Zhang Y, Lucocq JM, Yamamoto M, Hayes JD. Biochem J; 2007 Dec 01; 408(2):161-72. PubMed ID: 17705787 [Abstract] [Full Text] [Related]
13. The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. Nioi P, Nguyen T, Sherratt PJ, Pickett CB. Mol Cell Biol; 2005 Dec 01; 25(24):10895-906. PubMed ID: 16314513 [Abstract] [Full Text] [Related]
14. Critical cysteine residues of Kelch-like ECH-associated protein 1 in arsenic sensing and suppression of nuclear factor erythroid 2-related factor 2. He X, Ma Q. J Pharmacol Exp Ther; 2010 Jan 01; 332(1):66-75. PubMed ID: 19808700 [Abstract] [Full Text] [Related]
15. Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. Lo SC, Li X, Henzl MT, Beamer LJ, Hannink M. EMBO J; 2006 Aug 09; 25(15):3605-17. PubMed ID: 16888629 [Abstract] [Full Text] [Related]
16. Signaling pathways activated by the phytochemical nordihydroguaiaretic acid contribute to a Keap1-independent regulation of Nrf2 stability: Role of glycogen synthase kinase-3. Rojo AI, Medina-Campos ON, Rada P, Zúñiga-Toalá A, López-Gazcón A, Espada S, Pedraza-Chaverri J, Cuadrado A. Free Radic Biol Med; 2012 Jan 15; 52(2):473-87. PubMed ID: 22142471 [Abstract] [Full Text] [Related]
17. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2. Sun Z, Zhang S, Chan JY, Zhang DD. Mol Cell Biol; 2007 Sep 15; 27(18):6334-49. PubMed ID: 17636022 [Abstract] [Full Text] [Related]
18. The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm. Zipper LM, Mulcahy RT. J Biol Chem; 2002 Sep 27; 277(39):36544-52. PubMed ID: 12145307 [Abstract] [Full Text] [Related]
19. Protection against chromium (VI)-induced oxidative stress and apoptosis by Nrf2. Recruiting Nrf2 into the nucleus and disrupting the nuclear Nrf2/Keap1 association. He X, Lin GX, Chen MG, Zhang JX, Ma Q. Toxicol Sci; 2007 Jul 27; 98(1):298-309. PubMed ID: 17420218 [Abstract] [Full Text] [Related]
20. Effects of different exercise durations on Keap1-Nrf2-ARE pathway activation in mouse skeletal muscle. Li T, He S, Liu S, Kong Z, Wang J, Zhang Y. Free Radic Res; 2015 Oct 27; 49(10):1269-74. PubMed ID: 26118597 [Abstract] [Full Text] [Related] Page: [Next] [New Search]