These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


353 related items for PubMed ID: 16872404

  • 1. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis.
    Tam le T, Eymann C, Albrecht D, Sietmann R, Schauer F, Hecker M, Antelmann H.
    Environ Microbiol; 2006 Aug; 8(8):1408-27. PubMed ID: 16872404
    [Abstract] [Full Text] [Related]

  • 2. Transcriptome and proteome analyses in response to 2-methylhydroquinone and 6-brom-2-vinyl-chroman-4-on reveal different degradation systems involved in the catabolism of aromatic compounds in Bacillus subtilis.
    Nguyen VD, Wolf C, Mäder U, Lalk M, Langer P, Lindequist U, Hecker M, Antelmann H.
    Proteomics; 2007 May; 7(9):1391-408. PubMed ID: 17407181
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Proteomic signatures uncover thiol-specific electrophile resistance mechanisms in Bacillus subtilis.
    Antelmann H, Hecker M, Zuber P.
    Expert Rev Proteomics; 2008 Feb; 5(1):77-90. PubMed ID: 18282125
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Global expression profiling of Bacillus subtilis cells during industrial-close fed-batch fermentations with different nitrogen sources.
    Jürgen B, Tobisch S, Wümpelmann M, Gördes D, Koch A, Thurow K, Albrecht D, Hecker M, Schweder T.
    Biotechnol Bioeng; 2005 Nov 05; 92(3):277-98. PubMed ID: 16178035
    [Abstract] [Full Text] [Related]

  • 10. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes.
    Lulko AT, Buist G, Kok J, Kuipers OP.
    J Mol Microbiol Biotechnol; 2007 Nov 05; 12(1-2):82-95. PubMed ID: 17183215
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Genome-Wide Characterization of the Fur Regulatory Network Reveals a Link between Catechol Degradation and Bacillibactin Metabolism in Bacillus subtilis.
    Pi H, Helmann JD.
    mBio; 2018 Oct 30; 9(5):. PubMed ID: 30377275
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair.
    Michel A, Agerer F, Hauck CR, Herrmann M, Ullrich J, Hacker J, Ohlsen K.
    J Bacteriol; 2006 Aug 30; 188(16):5783-96. PubMed ID: 16885446
    [Abstract] [Full Text] [Related]

  • 18. Salt stress adaptation of Bacillus subtilis: a physiological proteomics approach.
    Höper D, Bernhardt J, Hecker M.
    Proteomics; 2006 Mar 30; 6(5):1550-62. PubMed ID: 16440371
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.