These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
138 related items for PubMed ID: 16876128
21. NMR backbone resonance assignments of the N, P domains of CopA, a copper-transporting ATPase, in the apo and ligand bound states. Meng D, Bruschweiler-Li L, Zhang F, Brüschweiler R. Biomol NMR Assign; 2015 Apr; 9(1):129-33. PubMed ID: 24706033 [Abstract] [Full Text] [Related]
22. The promiscuous phosphomonoestearase activity of Archaeoglobus fulgidus CopA, a thermophilic Cu+ transport ATPase. Bredeston LM, González Flecha FL. Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1471-8. PubMed ID: 27086711 [Abstract] [Full Text] [Related]
23. Characterization of AMA, a new AAA protein from Archaeoglobus and methanogenic archaea. Djuranovic S, Rockel B, Lupas AN, Martin J. J Struct Biol; 2006 Oct; 156(1):130-8. PubMed ID: 16730457 [Abstract] [Full Text] [Related]
24. Identification of the transmembrane metal binding site in Cu+-transporting PIB-type ATPases. Mandal AK, Yang Y, Kertesz TM, Argüello JM. J Biol Chem; 2004 Dec 24; 279(52):54802-7. PubMed ID: 15494391 [Abstract] [Full Text] [Related]
25. CopAb, the second N-terminal soluble domain of Bacillus subtilis CopA, dominates the Cu(I)-binding properties of CopAab. Zhou L, Singleton C, Le Brun NE. Dalton Trans; 2012 May 21; 41(19):5939-48. PubMed ID: 22531974 [Abstract] [Full Text] [Related]
27. Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis. Banci L, Bertini I, Ciofi-Baffoni S, Del Conte R, Gonnelli L. Biochemistry; 2003 Feb 25; 42(7):1939-49. PubMed ID: 12590580 [Abstract] [Full Text] [Related]
30. Distinct functions of serial metal-binding domains in the Escherichia coli P1 B -ATPase CopA. Drees SL, Beyer DF, Lenders-Lomscher C, Lübben M. Mol Microbiol; 2015 Aug 25; 97(3):423-38. PubMed ID: 25899340 [Abstract] [Full Text] [Related]
31. Nucleotide recognition by CopA, a Cu+-transporting P-type ATPase. Tsuda T, Toyoshima C. EMBO J; 2009 Jun 17; 28(12):1782-91. PubMed ID: 19478797 [Abstract] [Full Text] [Related]
32. Role of the N-terminal tail of metal-transporting P(1B)-type ATPases from genome-wide analysis and molecular dynamics simulations. Sharma S, Rosato A. J Chem Inf Model; 2009 Jan 17; 49(1):76-83. PubMed ID: 19090784 [Abstract] [Full Text] [Related]
33. Toward a molecular understanding of metal transport by P(1B)-type ATPases. Rosenzweig AC, Argüello JM. Curr Top Membr; 2012 Jan 17; 69():113-36. PubMed ID: 23046649 [Abstract] [Full Text] [Related]
35. Thermal stability of CopA, a polytopic membrane protein from the hyperthermophile Archaeoglobus fulgidus. Cattoni DI, González Flecha FL, Argüello JM. Arch Biochem Biophys; 2008 Mar 15; 471(2):198-206. PubMed ID: 18187034 [Abstract] [Full Text] [Related]
38. Copper-transfer mechanism from the human chaperone Atox1 to a metal-binding domain of Wilson disease protein. Rodriguez-Granillo A, Crespo A, Estrin DA, Wittung-Stafshede P. J Phys Chem B; 2010 Mar 18; 114(10):3698-706. PubMed ID: 20166696 [Abstract] [Full Text] [Related]
39. The mechanism of Cu+ transport ATPases: interaction with CU+ chaperones and the role of transient metal-binding sites. Padilla-Benavides T, McCann CJ, Argüello JM. J Biol Chem; 2013 Jan 04; 288(1):69-78. PubMed ID: 23184962 [Abstract] [Full Text] [Related]