These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
142 related items for PubMed ID: 16876151
21. Effect of temperature and host tree on cold hardiness of hemlock looper eggs along a latitudinal gradient. Rochefort S, Berthiaume R, Hébert C, Charest M, Bauce E. J Insect Physiol; 2011 Jun; 57(6):751-9. PubMed ID: 21356214 [Abstract] [Full Text] [Related]
22. cDNA cloning of heat shock proteins and their expression in the two phases of the migratory locust. Wang HS, Wang XH, Zhou CS, Huang LH, Zhang SF, Guo W, Kang L. Insect Mol Biol; 2007 Apr; 16(2):207-19. PubMed ID: 17298555 [Abstract] [Full Text] [Related]
23. Egg hatching of two locusts, Schistocerca gregaria and Locusta migratoria, in response to light and temperature cycles. Nishide Y, Tanaka S, Saeki S. J Insect Physiol; 2015 May; 76():24-9. PubMed ID: 25796138 [Abstract] [Full Text] [Related]
24. Chill sensitivity and cryopreservation of eggs of the greater wax moth Galleria mellonella (Lepidoptera: Pyralidae). Roversi PF, Cosi E, Irdani T. Cryobiology; 2008 Feb; 56(1):1-7. PubMed ID: 17950266 [Abstract] [Full Text] [Related]
25. Rapid cold hardening in young hoppers of the migratory locust Locusta migratoria L. (Orthoptera: Acridiidae). Wang XH, Kang L. Cryo Letters; 2003 Feb; 24(5):331-40. PubMed ID: 14566393 [Abstract] [Full Text] [Related]
26. Changes in carbohydrates, ABA and bark proteins during seasonal cold acclimation and deacclimation in Hydrangea species differing in cold hardiness. Pagter M, Jensen CR, Petersen KK, Liu F, Arora R. Physiol Plant; 2008 Nov; 134(3):473-85. PubMed ID: 18636985 [Abstract] [Full Text] [Related]
27. Cold storage and cryopreservation of hops (Humulus l.) shoot cultures through application of standard protocols. Reed BM, Okut N, D'Achino J, Narver L, DeNoma J. Cryo Letters; 2003 Nov; 24(6):389-96. PubMed ID: 14671691 [Abstract] [Full Text] [Related]
28. Cold Tolerance of the Tribolium castaneum (Coleoptera: Tenebrionidae), Under Different Thermal Regimes: Impact of Cold Acclimation. Izadi H, Mohammadzadeh M, Mehrabian M. J Econ Entomol; 2019 Aug 03; 112(4):1983-1988. PubMed ID: 31083719 [Abstract] [Full Text] [Related]
29. Induced cold-tolerance mechanisms depend on duration of acclimation in the chill-sensitive Folsomia candida (Collembola). Waagner D, Holmstrup M, Bayley M, Sørensen JG. J Exp Biol; 2013 Jun 01; 216(Pt 11):1991-2000. PubMed ID: 23393277 [Abstract] [Full Text] [Related]
30. Cryoprotective role of polyols independent of the increase in supercooling capacity in diapausing adults of Pyrrhocoris apterus (Heteroptera: Insecta). Kost'ál V, Slachta M, Simek P. Comp Biochem Physiol B Biochem Mol Biol; 2001 Oct 01; 130(3):365-74. PubMed ID: 11567899 [Abstract] [Full Text] [Related]
31. Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect. Toxopeus J, Koštál V, Sinclair BJ. Proc Biol Sci; 2019 Mar 27; 286(1899):20190050. PubMed ID: 30890098 [Abstract] [Full Text] [Related]
32. Temporal plasticity in cold hardiness and cryoprotectant contents in northern versus temperate Colias butterflies (Lepidoptera: Pieridae). Vrba P, Nedved O, Zahradnickova H, Konvicka M. Cryo Letters; 2017 Mar 27; 38(4):330-338. PubMed ID: 29734435 [Abstract] [Full Text] [Related]
33. Physiological characteristics and cold tolerance of overwintering eggs in Gomphocerus sibiricus L. (Orthoptera: Acrididae). Song Y, Huang WW, Zhou Y, Li ZW, Ji R, Ye XF. Arch Insect Biochem Physiol; 2021 Dec 27; 108(4):e21846. PubMed ID: 34632624 [Abstract] [Full Text] [Related]
34. Antioxidative defence alterations in skeletal muscle during prolonged acclimation to cold: role of L-arginine/NO-producing pathway. Petrovic V, Buzadzic B, Korac A, Vasilijevic A, Jankovic A, Micunovic K, Korac B. J Exp Biol; 2008 Jan 27; 211(Pt 1):114-20. PubMed ID: 18083739 [Abstract] [Full Text] [Related]
35. Development of cryopreservation protocols for early stage zebrafish (Danio rerio) ovarian follicles using controlled slow cooling. Tsai S, Rawson DM, Zhang T. Theriogenology; 2009 May 27; 71(8):1226-33. PubMed ID: 19250661 [Abstract] [Full Text] [Related]
36. Extra- and intra-cellular ice formation of red seabream (Pagrus major) embryos at different cooling rates. Li J, Zhang LL, Liu QH, Xu XZ, Xiao ZZ, Ma DY, Xu SH, Xue QZ. Cryobiology; 2009 Aug 27; 59(1):48-53. PubMed ID: 19375414 [Abstract] [Full Text] [Related]
37. Cryopreservation of red snapper (Lutjanus argentimaculatus) sperm: effect of cryoprotectants and cooling rates on sperm motility, sperm viability, and fertilization capacity. Vuthiphandchai V, Chomphuthawach S, Nimrat S. Theriogenology; 2009 Jul 01; 72(1):129-38. PubMed ID: 19349072 [Abstract] [Full Text] [Related]
38. Cloning of heat shock protein genes (hsp90 and hsc70) and their expression during larval diapause and cold tolerance acquisition in the rice stem borer, Chilo suppressalis Walker. Sonoda S, Fukumoto K, Izumi Y, Yoshida H, Tsumuki H. Arch Insect Biochem Physiol; 2006 Sep 01; 63(1):36-47. PubMed ID: 16921518 [Abstract] [Full Text] [Related]
39. Changes in chemical components in the freshwater apple snail, Pomacea canaliculata (Gastropoda: Ampullariidae), in relation to the development of its cold hardiness. Matsukura K, Tsumuki H, Izumi Y, Wada T. Cryobiology; 2008 Apr 01; 56(2):131-7. PubMed ID: 18190902 [Abstract] [Full Text] [Related]
40. Change in lipid composition in eastern oyster (Crassostrea virginica Gmelin) exposed to constant or fluctuating temperature regimes. Pernet F, Gauthier-Clerc S, Mayrand E. Comp Biochem Physiol B Biochem Mol Biol; 2007 Jul 01; 147(3):557-65. PubMed ID: 17468027 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]