These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


202 related items for PubMed ID: 16879959

  • 21. Measurement of the surface concentration for bioassay kinetics in microchannels.
    Bancaud A, Wagner G, Dorfman KD, Viovy JL.
    Anal Chem; 2005 Feb 01; 77(3):833-9. PubMed ID: 15679351
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Miniaturized immunoassay microfluidic system with electrokinetic control.
    Xiang Q, Hu G, Gao Y, Li D.
    Biosens Bioelectron; 2006 Apr 15; 21(10):2006-9. PubMed ID: 16289606
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Optimization of microfluidic fuel cells using transport principles.
    Lee J, Lim KG, Palmore GT, Tripathi A.
    Anal Chem; 2007 Oct 01; 79(19):7301-7. PubMed ID: 17727270
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Numerical studies of continuous nutrient delivery for tumour spheroid culture in a microchannel by electrokinetically-induced pressure-driven flow.
    Movahed S, Li D.
    Biomed Microdevices; 2010 Dec 01; 12(6):1061-72. PubMed ID: 20689992
    [Abstract] [Full Text] [Related]

  • 28. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH, Su YD, Chen SJ, Tseng FG, Lee GB.
    Biosens Bioelectron; 2007 Nov 30; 23(4):466-72. PubMed ID: 17618110
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Application of the synthetic jet concept to low Reynolds number biosensor microfluidic flows for enhanced mixing: a numerical study using the lattice Boltzmann method.
    Mautner T.
    Biosens Bioelectron; 2004 Jun 15; 19(11):1409-19. PubMed ID: 15093212
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Mathematical and experimental analyses of antibody transport in hollow-fiber-based specific antibody filters.
    Hout MS, Federspiel WJ.
    Biotechnol Prog; 2003 Jun 15; 19(5):1553-61. PubMed ID: 14524719
    [Abstract] [Full Text] [Related]

  • 35. A dynamical study of antibody-antigen encounter reactions.
    Bongini L, Fanelli D, Piazza F, De Los Rios P, Sanner M, Skoglund U.
    Phys Biol; 2007 Oct 02; 4(3):172-80. PubMed ID: 17928656
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor.
    Ymeti A, Kanger JS, Greve J, Besselink GA, Lambeck PV, Wijn R, Heideman RG.
    Biosens Bioelectron; 2005 Jan 15; 20(7):1417-21. PubMed ID: 15590297
    [Abstract] [Full Text] [Related]

  • 38. Bead-based microfluidic immunoassays: the next generation.
    Lim CT, Zhang Y.
    Biosens Bioelectron; 2007 Feb 15; 22(7):1197-204. PubMed ID: 16857357
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Kinetics of antigen binding to antibody microspots: strong limitation by mass transport to the surface.
    Kusnezow W, Syagailo YV, Rüffer S, Klenin K, Sebald W, Hoheisel JD, Gauer C, Goychuk I.
    Proteomics; 2006 Feb 15; 6(3):794-803. PubMed ID: 16385475
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.