These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
312 related items for PubMed ID: 16881718
1. Antioxidant mechanism studies on ferulic acid: identification of oxidative coupling products from methyl ferulate and linoleate. Masuda T, Yamada K, Maekawa T, Takeda Y, Yamaguchi H. J Agric Food Chem; 2006 Aug 09; 54(16):6069-74. PubMed ID: 16881718 [Abstract] [Full Text] [Related]
5. The mechanism of radical-trapping antioxidant activity of plant-derived thiosulfinates. Lynett PT, Butts K, Vaidya V, Garrett GE, Pratt DA. Org Biomol Chem; 2011 May 07; 9(9):3320-30. PubMed ID: 21445384 [Abstract] [Full Text] [Related]
6. Identification of the antioxidation reaction products from a sinapic ester in a lipid oxidation system. Masuda T, Akiyama J, Takeda Y, Maekawa T, Sone Y. Biosci Biotechnol Biochem; 2009 Mar 23; 73(3):736-9. PubMed ID: 19270418 [Abstract] [Full Text] [Related]
7. Reaction products of [60]fullerene during the autoxidation of methyl linoleate in bulk phase. Kadowaki A, Iwamoto S, Yamauchi R. Chem Phys Lipids; 2012 Feb 23; 165(2):178-85. PubMed ID: 22209921 [Abstract] [Full Text] [Related]
12. Dichloro-4-quinolinol-3-carboxylic acid: synthesis and antioxidant abilities to scavenge radicals and to protect methyl linoleate and DNA. Li GX, Liu ZQ, Luo XY. Eur J Med Chem; 2010 May 06; 45(5):1821-7. PubMed ID: 20122762 [Abstract] [Full Text] [Related]
13. Studies on dimerisation of tocopherols under the influence of methyl linoleate peroxides. Gogolewski M, Nogala-Kalucka M, Galuba G. Nahrung; 2003 Apr 06; 47(2):74-8. PubMed ID: 12744282 [Abstract] [Full Text] [Related]
14. A planar catechin analogue having a more negative oxidation potential than (+)-catechin as an electron transfer antioxidant against a peroxyl radical. Nakanishi I, Ohkubo K, Miyazaki K, Hakamata W, Urano S, Ozawa T, Okuda H, Fukuzumi S, Ikota N, Fukuhara K. Chem Res Toxicol; 2004 Jan 06; 17(1):26-31. PubMed ID: 14727916 [Abstract] [Full Text] [Related]
15. Antioxidant potential of hydroxycinnamic acid glycoside esters. Kylli P, Nousiainen P, Biely P, Sipilä J, Tenkanen M, Heinonen M. J Agric Food Chem; 2008 Jun 25; 56(12):4797-805. PubMed ID: 18494493 [Abstract] [Full Text] [Related]
16. Mechanism and kinetics studies on the antioxidant activity of sinapinic acid. Galano A, Francisco-Márquez M, Alvarez-Idaboy JR. Phys Chem Chem Phys; 2011 Jun 21; 13(23):11199-205. PubMed ID: 21566849 [Abstract] [Full Text] [Related]
17. Synthesis of glycosyl ferulate derivatives by amine-promoted glycosylation with regioselective hydrolysis using Novozym 435 and evaluation of their antioxidant properties. Shimotori Y, Tsutano K, Soga K, Osawa Y, Aoyama M, Miyakoshi T. Carbohydr Res; 2012 Oct 01; 359():11-7. PubMed ID: 22925758 [Abstract] [Full Text] [Related]
18. Evaluation of antioxidant capacity of cereal brans. Martínez-Tomé M, Murcia MA, Frega N, Ruggieri S, Jiménez AM, Roses F, Parras P. J Agric Food Chem; 2004 Jul 28; 52(15):4690-9. PubMed ID: 15264901 [Abstract] [Full Text] [Related]
19. The Structure-Antioxidant Activity Relationship of Ferulates. Karamać M, Koleva L, Kancheva VD, Amarowicz R. Molecules; 2017 Mar 25; 22(4):. PubMed ID: 28346342 [Abstract] [Full Text] [Related]