These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


157 related items for PubMed ID: 16882884

  • 1. Transcriptome kinetics of arsenic-induced adaptive response in zebrafish liver.
    Lam SH, Winata CL, Tong Y, Korzh S, Lim WS, Korzh V, Spitsbergen J, Mathavan S, Miller LD, Liu ET, Gong Z.
    Physiol Genomics; 2006 Nov 27; 27(3):351-61. PubMed ID: 16882884
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. D-Serine exposure resulted in gene expression changes implicated in neurodegenerative disorders and neuronal dysfunction in male Fischer 344 rats.
    Davidson ME, Kerepesi LA, Soto A, Chan VT.
    Arch Toxicol; 2009 Aug 27; 83(8):747-62. PubMed ID: 19212759
    [Abstract] [Full Text] [Related]

  • 4. Identification of interspecies concordance of mechanisms of arsenic-induced bladder cancer.
    Sen B, Wolf DC, Turpaz Y, Bugrim A, Retief J, Hester SD.
    Toxicol In Vitro; 2007 Dec 27; 21(8):1513-29. PubMed ID: 17720352
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Transcriptome responses to carbon tetrachloride and pyrene in the kidney and liver of juvenile rainbow trout (Oncorhynchus mykiss).
    Krasnov A, Koskinen H, Rexroad C, Afanasyev S, Mölsä H, Oikari A.
    Aquat Toxicol; 2005 Aug 15; 74(1):70-81. PubMed ID: 15963578
    [Abstract] [Full Text] [Related]

  • 7. Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress.
    Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee IJ, Bahk JD, Kang KY, Renaut J, Komatsu S, Lee BH.
    Proteomics; 2008 Sep 15; 8(17):3561-76. PubMed ID: 18752204
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Transcriptional response of Desulfovibrio vulgaris Hildenborough to oxidative stress mimicking environmental conditions.
    Pereira PM, He Q, Xavier AV, Zhou J, Pereira IA, Louro RO.
    Arch Microbiol; 2008 May 15; 189(5):451-61. PubMed ID: 18060664
    [Abstract] [Full Text] [Related]

  • 10. Animal performance and stress: responses and tolerance limits at different levels of biological organisation.
    Kassahn KS, Crozier RH, Pörtner HO, Caley MJ.
    Biol Rev Camb Philos Soc; 2009 May 15; 84(2):277-92. PubMed ID: 19344429
    [Abstract] [Full Text] [Related]

  • 11. The cellular response to heat stress in the goby Gillichthys mirabilis: a cDNA microarray and protein-level analysis.
    Buckley BA, Gracey AY, Somero GN.
    J Exp Biol; 2006 Jul 15; 209(Pt 14):2660-77. PubMed ID: 16809457
    [Abstract] [Full Text] [Related]

  • 12. Hepatic gene expression profiling using GeneChips in zebrafish exposed to 17alpha-methyldihydrotestosterone.
    Hoffmann JL, Thomason RG, Lee DM, Brill JL, Price BB, Carr GJ, Versteeg DJ.
    Aquat Toxicol; 2008 Apr 28; 87(2):69-80. PubMed ID: 18339436
    [Abstract] [Full Text] [Related]

  • 13. Specificity of the zebrafish host transcriptome response to acute and chronic mycobacterial infection and the role of innate and adaptive immune components.
    van der Sar AM, Spaink HP, Zakrzewska A, Bitter W, Meijer AH.
    Mol Immunol; 2009 Jul 28; 46(11-12):2317-32. PubMed ID: 19409617
    [Abstract] [Full Text] [Related]

  • 14. The effects of temperature reduction on gene expression and oxidative stress in skeletal muscle from adult zebrafish.
    Malek RL, Sajadi H, Abraham J, Grundy MA, Gerhard GS.
    Comp Biochem Physiol C Toxicol Pharmacol; 2004 Jul 28; 138(3):363-73. PubMed ID: 15533794
    [Abstract] [Full Text] [Related]

  • 15. Phenotypic anchoring of arsenic and cadmium toxicity in three hepatic-related cell systems reveals compound- and cell-specific selective up-regulation of stress protein expression: implications for fingerprint profiling of cytotoxicity.
    Gottschalg E, Moore NE, Ryan AK, Travis LC, Waller RC, Pratt S, Atmaca M, Kind CN, Fry JR.
    Chem Biol Interact; 2006 Jul 10; 161(3):251-61. PubMed ID: 16729991
    [Abstract] [Full Text] [Related]

  • 16. Arsenic, mode of action at biologically plausible low doses: what are the implications for low dose cancer risk?
    Snow ET, Sykora P, Durham TR, Klein CB.
    Toxicol Appl Pharmacol; 2005 Sep 01; 207(2 Suppl):557-64. PubMed ID: 15996700
    [Abstract] [Full Text] [Related]

  • 17. Expression profile of liver genes in response to hepatotoxicants identified using a SAGE-based customized DNA microarray system.
    Inadera H, Tachibana S, Takasaki I, Tabuchi Y, Matsushima K, Uchida M, Shimomura A.
    Toxicol Lett; 2008 Feb 28; 177(1):20-30. PubMed ID: 18243596
    [Abstract] [Full Text] [Related]

  • 18. Analysis of genomic dose-response information on arsenic to inform key events in a mode of action for carcinogenicity.
    Gentry PR, McDonald TB, Sullivan DE, Shipp AM, Yager JW, Clewell HJ.
    Environ Mol Mutagen; 2010 Jan 28; 51(1):1-14. PubMed ID: 19551812
    [Abstract] [Full Text] [Related]

  • 19. Identification of differentially expressed genes in response to dietary iron deprivation in rat duodenum.
    Collins JF, Franck CA, Kowdley KV, Ghishan FK.
    Am J Physiol Gastrointest Liver Physiol; 2005 May 28; 288(5):G964-71. PubMed ID: 15637178
    [Abstract] [Full Text] [Related]

  • 20. Gene ontology mapping as an unbiased method for identifying molecular pathways and processes affected by toxicant exposure: application to acute effects caused by the rodent non-genotoxic carcinogen diethylhexylphthalate.
    Currie RA, Bombail V, Oliver JD, Moore DJ, Lim FL, Gwilliam V, Kimber I, Chipman K, Moggs JG, Orphanides G.
    Toxicol Sci; 2005 Aug 28; 86(2):453-69. PubMed ID: 15901911
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.