These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1190 related items for PubMed ID: 16883120

  • 1. Dialyzer clearances and mass transfer-area coefficients for small solutes at low dialysate flow rates.
    Leypoldt JK, Kamerath CD, Gilson JF, Friederichs G.
    ASAIO J; 2006; 52(4):404-9. PubMed ID: 16883120
    [Abstract] [Full Text] [Related]

  • 2. Increases in mass transfer-area coefficients and urea Kt/V with increasing dialysate flow rate are greater for high-flux dialyzers.
    Leypoldt JK, Cheung AK.
    Am J Kidney Dis; 2001 Sep; 38(3):575-9. PubMed ID: 11532691
    [Abstract] [Full Text] [Related]

  • 3. Increasing dialysate flow rate increases dialyzer urea mass transfer-area coefficients during clinical use.
    Ouseph R, Ward RA.
    Am J Kidney Dis; 2001 Feb; 37(2):316-20. PubMed ID: 11157372
    [Abstract] [Full Text] [Related]

  • 4. Flow distribution analysis by helical scanning in polysulfone hemodialyzers: effects of fiber structure and design on flow patterns and solute clearances.
    Ronco C, Levin N, Brendolan A, Nalesso F, Cruz D, Ocampo C, Kuang D, Bonello M, De Cal M, Corradi V, Ricci Z.
    Hemodial Int; 2006 Oct; 10(4):380-8. PubMed ID: 17014516
    [Abstract] [Full Text] [Related]

  • 5. Hollow fiber shape alters solute clearances in high flux hemodialyzers.
    Leypoldt JK, Cheung AK, Chirananthavat T, Gilson JF, Kamerath CD, Deeter RB.
    ASAIO J; 2003 Oct; 49(1):81-7. PubMed ID: 12558312
    [Abstract] [Full Text] [Related]

  • 6. Relationship between effective ionic dialysance and in vivo urea clearance during hemodialysis.
    Lindsay RM, Bene B, Goux N, Heidenheim AP, Landgren C, Sternby J.
    Am J Kidney Dis; 2001 Sep; 38(3):565-74. PubMed ID: 11532690
    [Abstract] [Full Text] [Related]

  • 7. Middle molecule removal in low-flux polysulfone dialyzers: impact of flows and surface area on whole-body and dialyzer clearances.
    Eloot S, de Vos JY, de Vos F, Hombrouckx R, Verdonck P.
    Hemodial Int; 2005 Oct; 9(4):399-408. PubMed ID: 16219061
    [Abstract] [Full Text] [Related]

  • 8. Increasing dialysate flow rate increases dialyzer urea clearance and dialysis efficiency: an in vivo study.
    Azar AT.
    Saudi J Kidney Dis Transpl; 2009 Nov; 20(6):1023-9. PubMed ID: 19861865
    [Abstract] [Full Text] [Related]

  • 9. Effect of hemodialyzer reuse: dissociation between clearances of small and large solutes.
    Leypoldt JK, Cheung AK, Deeter RB.
    Am J Kidney Dis; 1998 Aug; 32(2):295-301. PubMed ID: 9708616
    [Abstract] [Full Text] [Related]

  • 10. Solute clearance in continuous venovenous hemodialysis. A comparison of cuprophane, polyacrylonitrile, and polysulfone membranes.
    Ifediora OC, Teehan BP, Sigler MH.
    ASAIO J; 1992 Aug; 38(3):M697-701. PubMed ID: 1457952
    [Abstract] [Full Text] [Related]

  • 11. Effect of formaldehyde/bleach reprocessing on in vivo performances of high-efficiency cellulose and high-flux polysulfone dialyzers.
    Murthy BV, Sundaram S, Jaber BL, Perrella C, Meyer KB, Pereira BJ.
    J Am Soc Nephrol; 1998 Mar; 9(3):464-72. PubMed ID: 9513910
    [Abstract] [Full Text] [Related]

  • 12. Effects of a reduced inner diameter of hollow fibers in hemodialyzers.
    Ronco C, Brendolan A, Lupi A, Metry G, Levin NW.
    Kidney Int; 2000 Aug; 58(2):809-17. PubMed ID: 10916106
    [Abstract] [Full Text] [Related]

  • 13. Impact of blood and dialysate flow and surface on performance of new polysulfone hemodialysis dialyzers.
    Mandolfo S, Malberti F, Imbasciati E, Cogliati P, Gauly A.
    Int J Artif Organs; 2003 Feb; 26(2):113-20. PubMed ID: 12653344
    [Abstract] [Full Text] [Related]

  • 14. Slow continuous ultrafiltration with bound solute dialysis.
    Patzer JF, Safta SA, Miller RH.
    ASAIO J; 2006 Feb; 52(1):47-58. PubMed ID: 16436890
    [Abstract] [Full Text] [Related]

  • 15. Blood and dialysate flow distributions in hollow-fiber hemodialyzers analyzed by computerized helical scanning technique.
    Ronco C, Brendolan A, Crepaldi C, Rodighiero M, Scabardi M.
    J Am Soc Nephrol; 2002 Jan; 13 Suppl 1():S53-61. PubMed ID: 11792763
    [Abstract] [Full Text] [Related]

  • 16. Evaluation of dialyzer jacket structure and hollow-fiber dialysis membranes to achieve high dialysis performance.
    Hirano A, Yamamoto K, Matsuda M, Ogawa T, Yakushiji T, Miyasaka T, Sakai K.
    Ther Apher Dial; 2011 Feb; 15(1):66-74. PubMed ID: 21272255
    [Abstract] [Full Text] [Related]

  • 17. Technical characterization of dialysis fluid flow of newly developed dialyzers using mass transfer correlation equations.
    Kunikata S, Fukuda M, Yamamoto K, Yagi Y, Matsuda M, Sakai K.
    ASAIO J; 2009 Feb; 55(3):231-5. PubMed ID: 19357496
    [Abstract] [Full Text] [Related]

  • 18. Hemodiafiltration--a new treatment option for hyperphosphatemia in hemodialysis patients.
    Zehnder C, Gutzwiller JP, Renggli K.
    Clin Nephrol; 1999 Sep; 52(3):152-9. PubMed ID: 10499310
    [Abstract] [Full Text] [Related]

  • 19. Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. The Hemodialysis (HEMO) Study.
    Leypoldt JK, Cheung AK, Agodoa LY, Daugirdas JT, Greene T, Keshaviah PR.
    Kidney Int; 1997 Jun; 51(6):2013-7. PubMed ID: 9186896
    [Abstract] [Full Text] [Related]

  • 20. Increasing the clearance of protein-bound solutes by addition of a sorbent to the dialysate.
    Meyer TW, Peattie JW, Miller JD, Dinh DC, Recht NS, Walther JL, Hostetter TH.
    J Am Soc Nephrol; 2007 Mar; 18(3):868-74. PubMed ID: 17251385
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 60.