These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
285 related items for PubMed ID: 16885295
21. Optimization of DNA extraction and molecular detection of Cryptosporidium oocysts in natural mineral water sources. Nichols RA, Smith HV. J Food Prot; 2004 Mar; 67(3):524-32. PubMed ID: 15035368 [Abstract] [Full Text] [Related]
22. Longitudinal prevalence, oocyst shedding and molecular characterisation of Cryptosporidium species in sheep across four states in Australia. Yang R, Jacobson C, Gardner G, Carmichael I, Campbell AJ, Ng-Hublin J, Ryan U. Vet Parasitol; 2014 Feb 24; 200(1-2):50-8. PubMed ID: 24332963 [Abstract] [Full Text] [Related]
23. Patterns of Cryptosporidium oocyst shedding by eastern grey kangaroos inhabiting an Australian watershed. Power ML, Sangster NC, Slade MB, Veal DA. Appl Environ Microbiol; 2005 Oct 24; 71(10):6159-64. PubMed ID: 16204534 [Abstract] [Full Text] [Related]
24. Genetical survey of novel type of Cryptosporidium andersoni in cattle in Japan. Matsubayashi M, Nagano S, Kita T, Narushima T, Kimata I, Iseki M, Hajiri T, Tani H, Sasai K, Baba E. Vet Parasitol; 2008 Nov 25; 158(1-2):44-50. PubMed ID: 18922640 [Abstract] [Full Text] [Related]
25. A whole water catchment approach to investigating the origin and distribution of Cryptosporidium species. Robinson G, Chalmers RM, Stapleton C, Palmer SR, Watkins J, Francis C, Kay D. J Appl Microbiol; 2011 Sep 25; 111(3):717-30. PubMed ID: 21649804 [Abstract] [Full Text] [Related]
26. Species-specific, nested PCR-restriction fragment length polymorphism detection of single Cryptosporidium parvum oocysts. Sturbaum GD, Reed C, Hoover PJ, Jost BH, Marshall MM, Sterling CR. Appl Environ Microbiol; 2001 Jun 25; 67(6):2665-8. PubMed ID: 11375178 [Abstract] [Full Text] [Related]
27. Genotyping of single Cryptosporidium oocysts in sewage by semi-nested PCR and direct sequencing. Hashimoto A, Sugimoto H, Morita S, Hirata T. Water Res; 2006 Jul 25; 40(13):2527-32. PubMed ID: 16790257 [Abstract] [Full Text] [Related]
28. Real-time nucleic acid sequence-based amplification (NASBA) assay targeting MIC1 for detection of Cryptosporidium parvum and Cryptosporidium hominis oocysts. Hønsvall BK, Robertson LJ. Exp Parasitol; 2017 Jan 25; 172():61-67. PubMed ID: 27998735 [Abstract] [Full Text] [Related]
29. Development of a sensitive detection system for Cryptosporidium in environmental samples. Ramirez NE, Sreevatsan S. Vet Parasitol; 2006 Mar 31; 136(3-4):201-13. PubMed ID: 16387443 [Abstract] [Full Text] [Related]
30. Detection and resolution of Cryptosporidium species and species mixtures by genus-specific nested PCR-restriction fragment length polymorphism analysis, direct sequencing, and cloning. Ruecker NJ, Hoffman RM, Chalmers RM, Neumann NF. Appl Environ Microbiol; 2011 Jun 31; 77(12):3998-4007. PubMed ID: 21498746 [Abstract] [Full Text] [Related]
31. Development and Evaluation of Three Real-Time PCR Assays for Genotyping and Source Tracking Cryptosporidium spp. in Water. Li N, Neumann NF, Ruecker N, Alderisio KA, Sturbaum GD, Villegas EN, Chalmers R, Monis P, Feng Y, Xiao L. Appl Environ Microbiol; 2015 Sep 01; 81(17):5845-54. PubMed ID: 26092455 [Abstract] [Full Text] [Related]
32. Phylogenetic analysis of the hypervariable region of the 18S rRNA gene of Cryptosporidium oocysts in feces of Canada geese (Branta canadensis): evidence for five novel genotypes. Jellison KL, Distel DL, Hemond HF, Schauer DB. Appl Environ Microbiol; 2004 Jan 01; 70(1):452-8. PubMed ID: 14711674 [Abstract] [Full Text] [Related]
33. An assay combining cell culture with reverse transcriptase PCR to detect and determine the infectivity of waterborne Cryptosporidium parvum. Rochelle PA, Ferguson DM, Handojo TJ, De Leon R, Stewart MH, Wolfe RL. Appl Environ Microbiol; 1997 May 01; 63(5):2029-37. PubMed ID: 9143132 [Abstract] [Full Text] [Related]
34. Genotyping of Cryptosporidium parvum with microsatellite markers. Widmer G, Feng X, Tanriverdi S. Methods Mol Biol; 2004 May 01; 268():177-87. PubMed ID: 15156029 [Abstract] [Full Text] [Related]
35. Molecular characterization of cryptosporidium oocysts in samples of raw surface water and wastewater. Xiao L, Singh A, Limor J, Graczyk TK, Gradus S, Lal A. Appl Environ Microbiol; 2001 Mar 01; 67(3):1097-101. PubMed ID: 11229897 [Abstract] [Full Text] [Related]
36. High resolution melting-curve (HRM) analysis for the diagnosis of cryptosporidiosis in humans. Pangasa A, Jex AR, Campbell BE, Bott NJ, Whipp M, Hogg G, Stevens MA, Gasser RB. Mol Cell Probes; 2009 Feb 01; 23(1):10-5. PubMed ID: 19013516 [Abstract] [Full Text] [Related]
37. Comparison of assays for sensitive and reproducible detection of cell culture-infectious Cryptosporidium parvum and Cryptosporidium hominis in drinking water. Johnson AM, Giovanni GD, Rochelle PA. Appl Environ Microbiol; 2012 Jan 01; 78(1):156-62. PubMed ID: 22038611 [Abstract] [Full Text] [Related]
38. Sequence differences in the diagnostic target region of the oocyst wall protein gene of Cryptosporidium parasites. Xiao L, Limor J, Morgan UM, Sulaiman IM, Thompson RC, Lal AA. Appl Environ Microbiol; 2000 Dec 01; 66(12):5499-502. PubMed ID: 11097936 [Abstract] [Full Text] [Related]
39. Cryptosporidium ubiquitum n. sp. in animals and humans. Fayer R, Santín M, Macarisin D. Vet Parasitol; 2010 Aug 27; 172(1-2):23-32. PubMed ID: 20537798 [Abstract] [Full Text] [Related]
40. An evaluation of molecular diagnostic tools for the detection and differentiation of human-pathogenic Cryptosporidium spp. Jiang J, Xiao L. J Eukaryot Microbiol; 2003 Aug 27; 50 Suppl():542-7. PubMed ID: 14736156 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]