These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


263 related items for PubMed ID: 16887791

  • 1. Accounting for cognitive aging: context processing, inhibition or processing speed?
    Rush BK, Barch DM, Braver TS.
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2006; 13(3-4):588-610. PubMed ID: 16887791
    [Abstract] [Full Text] [Related]

  • 2. Cognitive aging in patients with multiple sclerosis: a cross-sectional analysis of speeded processing.
    Bodling AM, Denney DR, Lynch SG.
    Arch Clin Neuropsychol; 2009 Dec; 24(8):761-7. PubMed ID: 19820246
    [Abstract] [Full Text] [Related]

  • 3. Age differences in Stroop interference: contributions of general slowing and task-specific deficits.
    Bugg JM, DeLosh EL, Davalos DB, Davis HP.
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2007 Mar; 14(2):155-67. PubMed ID: 17364378
    [Abstract] [Full Text] [Related]

  • 4. Processing speed and executive functions in cognitive aging: how to disentangle their mutual relationship?
    Albinet CT, Boucard G, Bouquet CA, Audiffren M.
    Brain Cogn; 2012 Jun; 79(1):1-11. PubMed ID: 22387275
    [Abstract] [Full Text] [Related]

  • 5. Higher free testosterone level is associated with faster visual processing and more flanker interference in older men.
    Van Strien JW, Weber RF, Burdorf A, Bangma C.
    Psychoneuroendocrinology; 2009 May; 34(4):546-54. PubMed ID: 19042092
    [Abstract] [Full Text] [Related]

  • 6. Slower speed-of-processing of cognitive tasks is associated with presence of the apolipoprotein epsilon4 allele.
    O'Hara R, Sommer B, Way N, Kraemer HC, Taylor J, Murphy G.
    J Psychiatr Res; 2008 Feb; 42(3):199-204. PubMed ID: 17250852
    [Abstract] [Full Text] [Related]

  • 7. Context processing and cognitive control in children and young adults.
    Lorsbach TC, Reimer JF.
    J Genet Psychol; 2008 Mar; 169(1):34-50. PubMed ID: 18476476
    [Abstract] [Full Text] [Related]

  • 8. Predicting age-related dual-task effects with individual differences on neuropsychological tests.
    Holtzer R, Stern Y, Rakitin BC.
    Neuropsychology; 2005 Jan; 19(1):18-27. PubMed ID: 15656759
    [Abstract] [Full Text] [Related]

  • 9. Aging and inhibition of a prepotent motor response during an ongoing action.
    Potter LM, Grealy MA.
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2008 Mar; 15(2):232-55. PubMed ID: 17851981
    [Abstract] [Full Text] [Related]

  • 10. Effects of age and mild cognitive impairment on direct and indirect access to arithmetic knowledge.
    Zamarian L, Stadelmann E, Nürk HC, Gamboz N, Marksteiner J, Delazer M.
    Neuropsychologia; 2007 Apr 08; 45(7):1511-21. PubMed ID: 17194465
    [Abstract] [Full Text] [Related]

  • 11. Cognitive function in late life depression: relationships to depression severity, cerebrovascular risk factors and processing speed.
    Sheline YI, Barch DM, Garcia K, Gersing K, Pieper C, Welsh-Bohmer K, Steffens DC, Doraiswamy PM.
    Biol Psychiatry; 2006 Jul 01; 60(1):58-65. PubMed ID: 16414031
    [Abstract] [Full Text] [Related]

  • 12. Adult age differences in errand planning: the role of task familiarity and cognitive resources.
    Kliegel M, Martin M, McDaniel MA, Phillips LH.
    Exp Aging Res; 2007 Jul 01; 33(2):145-61. PubMed ID: 17364904
    [Abstract] [Full Text] [Related]

  • 13. Automaticity of cognitive control: goal priming in response-inhibition paradigms.
    Verbruggen F, Logan GD.
    J Exp Psychol Learn Mem Cogn; 2009 Sep 01; 35(5):1381-8. PubMed ID: 19686032
    [Abstract] [Full Text] [Related]

  • 14. Inhibitory control of saccadic eye movements and cognitive impairment in Alzheimer's disease.
    Crawford TJ, Higham S, Renvoize T, Patel J, Dale M, Suriya A, Tetley S.
    Biol Psychiatry; 2005 May 01; 57(9):1052-60. PubMed ID: 15860346
    [Abstract] [Full Text] [Related]

  • 15. The effect of aging in recollective experience: the processing speed and executive functioning hypothesis.
    Bugaiska A, Clarys D, Jarry C, Taconnat L, Tapia G, Vanneste S, Isingrini M.
    Conscious Cogn; 2007 Dec 01; 16(4):797-808. PubMed ID: 17251040
    [Abstract] [Full Text] [Related]

  • 16. Cognitive processes in the development of TOL performance.
    Asato MR, Sweeney JA, Luna B.
    Neuropsychologia; 2006 Dec 01; 44(12):2259-69. PubMed ID: 16797612
    [Abstract] [Full Text] [Related]

  • 17. Aging and inhibition: beyond a unitary view of inhibitory processing in attention.
    Kramer AF, Humphrey DG, Larish JF, Logan GD, Strayer DL.
    Psychol Aging; 1994 Dec 01; 9(4):491-512. PubMed ID: 7893421
    [Abstract] [Full Text] [Related]

  • 18. Stroop performance in multiple sclerosis: information processing, selective attention, or executive functioning?
    Macniven JA, Davis C, Ho MY, Bradshaw CM, Szabadi E, Constantinescu CS.
    J Int Neuropsychol Soc; 2008 Sep 01; 14(5):805-14. PubMed ID: 18764975
    [Abstract] [Full Text] [Related]

  • 19. Age differences in deactivation: a link to cognitive control?
    Persson J, Lustig C, Nelson JK, Reuter-Lorenz PA.
    J Cogn Neurosci; 2007 Jun 01; 19(6):1021-32. PubMed ID: 17536972
    [Abstract] [Full Text] [Related]

  • 20. Chronic glucocorticoid hypersecretion in Cushing's syndrome exacerbates cognitive aging.
    Michaud K, Forget H, Cohen H.
    Brain Cogn; 2009 Oct 01; 71(1):1-8. PubMed ID: 19428166
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.