These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
118 related items for PubMed ID: 16887920
1. Responses of thoracic spinal neurons to activation and desensitization of cardiac TRPV1-containing afferents in rats. Qin C, Farber JP, Miller KE, Foreman RD. Am J Physiol Regul Integr Comp Physiol; 2006 Dec; 291(6):R1700-7. PubMed ID: 16887920 [Abstract] [Full Text] [Related]
2. Responses and afferent pathways of superficial and deeper c(1)-c(2) spinal cells to intrapericardial algogenic chemicals in rats. Qin C, Chandler MJ, Miller KE, Foreman RD. J Neurophysiol; 2001 Apr; 85(4):1522-32. PubMed ID: 11287476 [Abstract] [Full Text] [Related]
3. Chemical activation of cardiac receptors affects activity of superficial and deeper T3-T4 spinal neurons in rats. Qin C, Chandler MJ, Miller KE, Foreman RD. Brain Res; 2003 Jan 03; 959(1):77-85. PubMed ID: 12480160 [Abstract] [Full Text] [Related]
4. Neuromodulation of thoracic intraspinal visceroreceptive transmission by electrical stimulation of spinal dorsal column and somatic afferents in rats. Qin C, Farber JP, Linderoth B, Shahid A, Foreman RD. J Pain; 2008 Jan 03; 9(1):71-8. PubMed ID: 17974489 [Abstract] [Full Text] [Related]
5. Bradykinin is involved in the mediation of cardiac nociception during ischemia through upper thoracic spinal neurons. Qin C, Du JQ, Tang JS, Foreman RD. Curr Neurovasc Res; 2009 May 03; 6(2):89-94. PubMed ID: 19442157 [Abstract] [Full Text] [Related]
6. Sympatho-excitatory response to pulmonary chemosensitive spinal afferent activation in anesthetized, vagotomized rats. Shanks J, Xia Z, Lisco SJ, Rozanski GJ, Schultz HD, Zucker IH, Wang HJ. Physiol Rep; 2018 Jun 03; 6(12):e13742. PubMed ID: 29906340 [Abstract] [Full Text] [Related]
7. Gastrocardiac afferent convergence in upper thoracic spinal neurons: a central mechanism of postprandial angina pectoris. Qin C, Farber JP, Foreman RD. J Pain; 2007 Jun 03; 8(6):522-9. PubMed ID: 17434802 [Abstract] [Full Text] [Related]
8. Afferent pathway and neuromodulation of superficial and deeper thoracic spinal neurons receiving noxious pulmonary inputs in rats. Qin C, Foreman RD, Farber JP. Auton Neurosci; 2007 Jan 30; 131(1-2):77-86. PubMed ID: 16935568 [Abstract] [Full Text] [Related]
9. Comparison of activity characteristics of the cuneate nucleus and thoracic spinal neurons receiving noxious cardiac and/or somatic inputs in rats. Qin C, Goodman MD, Little JM, Farber JP, Foreman RD. Brain Res; 2010 Jul 30; 1346():102-11. PubMed ID: 20595052 [Abstract] [Full Text] [Related]
10. Characterization of upper thoracic spinal neurons receiving noxious cardiac and/or somatic inputs in diabetic rats. Ghorbani ML, Qin C, Wu M, Farber JP, Sheykhzade M, Fjalland B, Nyborg NC, Foreman RD. Auton Neurosci; 2011 Dec 07; 165(2):168-77. PubMed ID: 21862419 [Abstract] [Full Text] [Related]
12. Characterization of thoracic spinal neurons with noxious convergent inputs from heart and lower airways in rats. Qin C, Foreman RD, Farber JP. Brain Res; 2007 Apr 13; 1141():84-91. PubMed ID: 17280649 [Abstract] [Full Text] [Related]
13. A model of cardiac nociception in chronically instrumented rats: behavioral and electrophysiological effects of pericardial administration of algogenic substances. Euchner-Wamser I, Meller ST, Gebhart GF. Pain; 1994 Jul 13; 58(1):117-128. PubMed ID: 7970834 [Abstract] [Full Text] [Related]
14. Characterization of T9-T10 spinal neurons with duodenal input and modulation by gastric electrical stimulation in rats. Qin C, Chen JD, Zhang J, Foreman RD. Brain Res; 2007 Jun 04; 1152():75-86. PubMed ID: 17433808 [Abstract] [Full Text] [Related]
15. Cross-organ sensitization of thoracic spinal neurons receiving noxious cardiac input in rats with gastroesophageal reflux. Qin C, Malykhina AP, Thompson AM, Farber JP, Foreman RD. Am J Physiol Gastrointest Liver Physiol; 2010 Jun 04; 298(6):G934-42. PubMed ID: 20378832 [Abstract] [Full Text] [Related]
16. Transient receptor potential vanilloid receptor-1 does not contribute to slowly adapting airway receptor activation by inhaled ammonia. Wu M, Qin C, Foreman RD, Farber JP. Auton Neurosci; 2007 May 30; 133(2):121-7. PubMed ID: 17169618 [Abstract] [Full Text] [Related]
17. Activation of TRPV1 by capsaicin induces functional kinin B(1) receptor in rat spinal cord microglia. Talbot S, Dias JP, Lahjouji K, Bogo MR, Campos MM, Gaudreau P, Couture R. J Neuroinflammation; 2012 Jan 20; 9():16. PubMed ID: 22264228 [Abstract] [Full Text] [Related]
18. Roles of peripheral terminals of transient receptor potential vanilloid-1 containing sensory fibers in spinal cord stimulation-induced peripheral vasodilation. Wu M, Komori N, Qin C, Farber JP, Linderoth B, Foreman RD. Brain Res; 2007 Jul 02; 1156():80-92. PubMed ID: 17540346 [Abstract] [Full Text] [Related]
19. Role of TRPV1 and intracellular Ca2+ in excitation of cardiac sensory neurons by bradykinin. Wu ZZ, Pan HL. Am J Physiol Regul Integr Comp Physiol; 2007 Jul 02; 293(1):R276-83. PubMed ID: 17491115 [Abstract] [Full Text] [Related]
20. Bradykinin and thromboxane A2 reciprocally interact to synergistically stimulate cardiac spinal afferents during myocardial ischemia. Fu LW, Longhurst JC. Am J Physiol Heart Circ Physiol; 2010 Jan 02; 298(1):H235-44. PubMed ID: 19897709 [Abstract] [Full Text] [Related] Page: [Next] [New Search]