These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels. Maenaka H, Yamada M, Yasuda M, Seki M. Langmuir; 2008 Apr 15; 24(8):4405-10. PubMed ID: 18327961 [Abstract] [Full Text] [Related]
3. Continuous and precise particle separation by electroosmotic flow control in microfluidic devices. Kawamata T, Yamada M, Yasuda M, Seki M. Electrophoresis; 2008 Apr 15; 29(7):1423-30. PubMed ID: 18384021 [Abstract] [Full Text] [Related]
4. Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Yamada M, Nakashima M, Seki M. Anal Chem; 2004 Sep 15; 76(18):5465-71. PubMed ID: 15362908 [Abstract] [Full Text] [Related]
6. Continuous flow separation of particles within an asymmetric microfluidic device. Zhang X, Cooper JM, Monaghan PB, Haswell SJ. Lab Chip; 2006 Apr 15; 6(4):561-6. PubMed ID: 16572220 [Abstract] [Full Text] [Related]
7. Automatic microfluidic platform for cell separation and nucleus collection. Tai CH, Hsiung SK, Chen CY, Tsai ML, Lee GB. Biomed Microdevices; 2007 Aug 15; 9(4):533-43. PubMed ID: 17508288 [Abstract] [Full Text] [Related]
8. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Yamada M, Seki M. Lab Chip; 2005 Nov 15; 5(11):1233-9. PubMed ID: 16234946 [Abstract] [Full Text] [Related]
9. Continuous-flow fractionation of animal cells in microfluidic device using aqueous two-phase extraction. Nam KH, Chang WJ, Hong H, Lim SM, Kim DI, Koo YM. Biomed Microdevices; 2005 Sep 15; 7(3):189-95. PubMed ID: 16133806 [Abstract] [Full Text] [Related]
10. Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Takagi J, Yamada M, Yasuda M, Seki M. Lab Chip; 2005 Jul 15; 5(7):778-84. PubMed ID: 15970972 [Abstract] [Full Text] [Related]
11. Inertial microfluidics for continuous particle separation in spiral microchannels. Kuntaegowdanahalli SS, Bhagat AA, Kumar G, Papautsky I. Lab Chip; 2009 Oct 21; 9(20):2973-80. PubMed ID: 19789752 [Abstract] [Full Text] [Related]
12. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Choi S, Park JK. Lab Chip; 2005 Oct 21; 5(10):1161-7. PubMed ID: 16175274 [Abstract] [Full Text] [Related]
14. A microfluidic device for continuous, real time blood plasma separation. Yang S, Undar A, Zahn JD. Lab Chip; 2006 Jul 15; 6(7):871-80. PubMed ID: 16804591 [Abstract] [Full Text] [Related]
15. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Park JS, Song SH, Jung HI. Lab Chip; 2009 Apr 07; 9(7):939-48. PubMed ID: 19294305 [Abstract] [Full Text] [Related]
16. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Lewpiriyawong N, Yang C, Lam YC. Electrophoresis; 2010 Aug 07; 31(15):2622-31. PubMed ID: 20665920 [Abstract] [Full Text] [Related]
17. Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. VanDelinder V, Groisman A. Anal Chem; 2006 Jun 01; 78(11):3765-71. PubMed ID: 16737235 [Abstract] [Full Text] [Related]
18. Hydrophoretic sorting of micrometer and submicrometer particles using anisotropic microfluidic obstacles. Choi S, Song S, Choi C, Park JK. Anal Chem; 2009 Jan 01; 81(1):50-5. PubMed ID: 19117444 [Abstract] [Full Text] [Related]
19. Continuous cell partitioning using an aqueous two-phase flow system in microfluidic devices. Yamada M, Kasim V, Nakashima M, Edahiro J, Seki M. Biotechnol Bioeng; 2004 Nov 20; 88(4):489-94. PubMed ID: 15459911 [Abstract] [Full Text] [Related]