These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


462 related items for PubMed ID: 16892291

  • 1. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation.
    Merfort M, Herrmann U, Ha SW, Elfari M, Bringer-Meyer S, Görisch H, Sahm H.
    Biotechnol J; 2006 May; 1(5):556-63. PubMed ID: 16892291
    [Abstract] [Full Text] [Related]

  • 2. A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid.
    Elfari M, Ha SW, Bremus C, Merfort M, Khodaverdi V, Herrmann U, Sahm H, Görisch H.
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):668-74. PubMed ID: 15735967
    [Abstract] [Full Text] [Related]

  • 3. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans.
    Merfort M, Herrmann U, Bringer-Meyer S, Sahm H.
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):443-51. PubMed ID: 16820953
    [Abstract] [Full Text] [Related]

  • 4. Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343.
    Herrmann U, Merfort M, Jeude M, Bringer-Meyer S, Sahm H.
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):86-90. PubMed ID: 14564486
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans.
    Hölscher T, Schleyer U, Merfort M, Bringer-Meyer S, Görisch H, Sahm H.
    J Mol Microbiol Biotechnol; 2009 Mar; 16(1-2):6-13. PubMed ID: 18957858
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Enhancement of 5-keto-d-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy.
    Yuan J, Wu M, Lin J, Yang L.
    J Biosci Bioeng; 2016 Jul; 122(1):10-6. PubMed ID: 26896860
    [Abstract] [Full Text] [Related]

  • 10. [Optimization of the fermentation conditions for 5-keto-D-gluconic acid production].
    Li B, Pan H, Sun W, Cheng Y, Xie Z, Zhang J.
    Sheng Wu Gong Cheng Xue Bao; 2014 Sep; 30(9):1486-90. PubMed ID: 25720164
    [Abstract] [Full Text] [Related]

  • 11. Membrane-bound, 2-keto-D-gluconate-yielding D-gluconate dehydrogenase from "Gluconobacter dioxyacetonicus" IFO 3271: molecular properties and gene disruption.
    Toyama H, Furuya N, Saichana I, Ano Y, Adachi O, Matsushita K.
    Appl Environ Microbiol; 2007 Oct; 73(20):6551-6. PubMed ID: 17720837
    [Abstract] [Full Text] [Related]

  • 12. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343.
    Gätgens C, Degner U, Bringer-Meyer S, Herrmann U.
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):553-9. PubMed ID: 17497148
    [Abstract] [Full Text] [Related]

  • 13. Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans.
    Meyer M, Schweiger P, Deppenmeier U.
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3457-66. PubMed ID: 22790543
    [Abstract] [Full Text] [Related]

  • 14. Glucose oxidation by Gluconobacter oxydans: characterization in shaking-flasks, scale-up and optimization of the pH profile.
    Silberbach M, Maier B, Zimmermann M, Büchs J.
    Appl Microbiol Biotechnol; 2003 Jul; 62(1):92-8. PubMed ID: 12835926
    [Abstract] [Full Text] [Related]

  • 15. Engineered Expression Vectors Significantly Enhanced the Production of 2-Keto-D-gluconic Acid by Gluconobacter oxidans.
    Shi YY, Li KF, Lin JP, Yang SL, Wei DZ.
    J Agric Food Chem; 2015 Jun 10; 63(22):5492-8. PubMed ID: 26009934
    [Abstract] [Full Text] [Related]

  • 16. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H.
    Hölscher T, Görisch H.
    J Bacteriol; 2006 Nov 10; 188(21):7668-76. PubMed ID: 16936032
    [Abstract] [Full Text] [Related]

  • 17. Directional enhancement of 2-keto-gluconic acid production from enzymatic hydrolysate by acetic acid-mediated bio-oxidation with Gluconobacter oxydans.
    Dai L, Jiang W, Jia R, Zhou X, Xu Y.
    Bioresour Technol; 2022 Mar 10; 348():126811. PubMed ID: 35131459
    [Abstract] [Full Text] [Related]

  • 18. A single membrane-bound enzyme catalyzes the conversion of 2,5-diketo-d-gluconate to 4-keto-d-arabonate in d-glucose oxidative fermentation by Gluconobacter oxydans NBRC 3292.
    Tazoe M, Oishi H, Kobayashi S, Hoshino T.
    Biosci Biotechnol Biochem; 2016 Aug 10; 80(8):1505-12. PubMed ID: 27010909
    [Abstract] [Full Text] [Related]

  • 19. Efficient Production of 2,5-Diketo-d-Gluconate via Heterologous Expression of 2-Ketogluconate Dehydrogenase in Gluconobacter japonicus.
    Kataoka N, Matsutani M, Yakushi T, Matsushita K.
    Appl Environ Microbiol; 2015 May 15; 81(10):3552-60. PubMed ID: 25769838
    [Abstract] [Full Text] [Related]

  • 20. Substrate selectivity of Gluconobacter oxydans for production of 2,5-diketo-D-gluconic acid and synthesis of 2-keto-L-gulonic acid in a multienzyme system.
    Ji A, Gao P.
    Appl Biochem Biotechnol; 2001 Jun 15; 94(3):213-23. PubMed ID: 11563824
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.