These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


175 related items for PubMed ID: 16895802

  • 1. Oxidant stress and skeletal muscle glucose transport: roles of insulin signaling and p38 MAPK.
    Kim JS, Saengsirisuwan V, Sloniger JA, Teachey MK, Henriksen EJ.
    Free Radic Biol Med; 2006 Sep 01; 41(5):818-24. PubMed ID: 16895802
    [Abstract] [Full Text] [Related]

  • 2. Oxidative stress-induced insulin resistance in rat skeletal muscle: role of glycogen synthase kinase-3.
    Dokken BB, Saengsirisuwan V, Kim JS, Teachey MK, Henriksen EJ.
    Am J Physiol Endocrinol Metab; 2008 Mar 01; 294(3):E615-21. PubMed ID: 18089761
    [Abstract] [Full Text] [Related]

  • 3. Attenuation of oxidant-induced muscle insulin resistance and p38 MAPK by exercise training.
    Vichaiwong K, Henriksen EJ, Toskulkao C, Prasannarong M, Bupha-Intr T, Saengsirisuwan V.
    Free Radic Biol Med; 2009 Sep 01; 47(5):593-9. PubMed ID: 19500665
    [Abstract] [Full Text] [Related]

  • 4. Acute selective glycogen synthase kinase-3 inhibition enhances insulin signaling in prediabetic insulin-resistant rat skeletal muscle.
    Dokken BB, Sloniger JA, Henriksen EJ.
    Am J Physiol Endocrinol Metab; 2005 Jun 01; 288(6):E1188-94. PubMed ID: 15671078
    [Abstract] [Full Text] [Related]

  • 5. Oxidant-induced priming of the macrophage involves activation of p38 mitogen-activated protein kinase through an Src-dependent pathway.
    Khadaroo RG, Parodo J, Powers KA, Papia G, Marshall JC, Kapus A, Rotstein OD.
    Surgery; 2003 Aug 01; 134(2):242-6. PubMed ID: 12947324
    [Abstract] [Full Text] [Related]

  • 6. Chronic selective glycogen synthase kinase-3 inhibition enhances glucose disposal and muscle insulin action in prediabetic obese Zucker rats.
    Dokken BB, Henriksen EJ.
    Am J Physiol Endocrinol Metab; 2006 Aug 01; 291(2):E207-13. PubMed ID: 16478771
    [Abstract] [Full Text] [Related]

  • 7. Oxidant stress-induced loss of IRS-1 and IRS-2 proteins in rat skeletal muscle: role of p38 MAPK.
    Archuleta TL, Lemieux AM, Saengsirisuwan V, Teachey MK, Lindborg KA, Kim JS, Henriksen EJ.
    Free Radic Biol Med; 2009 Nov 15; 47(10):1486-93. PubMed ID: 19703555
    [Abstract] [Full Text] [Related]

  • 8. Enhanced insulin action on glucose transport and insulin signaling in 7-day unweighted rat soleus muscle.
    O'Keefe MP, Perez FR, Sloniger JA, Tischler ME, Henriksen EJ.
    J Appl Physiol (1985); 2004 Jul 15; 97(1):63-71. PubMed ID: 15004002
    [Abstract] [Full Text] [Related]

  • 9. Modulation of muscle insulin resistance by selective inhibition of GSK-3 in Zucker diabetic fatty rats.
    Henriksen EJ, Kinnick TR, Teachey MK, O'Keefe MP, Ring D, Johnson KW, Harrison SD.
    Am J Physiol Endocrinol Metab; 2003 May 15; 284(5):E892-900. PubMed ID: 12517738
    [Abstract] [Full Text] [Related]

  • 10. Essential role of p38 MAPK for activation of skeletal muscle glucose transport by lithium.
    Harrell NB, Teachey MK, Gifford NJ, Henriksen EJ.
    Arch Physiol Biochem; 2007 May 15; 113(4-5):221-7. PubMed ID: 18158645
    [Abstract] [Full Text] [Related]

  • 11. Roles of insulin signalling and p38 MAPK in the activation by lithium of glucose transport in insulin-resistant rat skeletal muscle.
    Macko AR, Beneze AN, Teachey MK, Henriksen EJ.
    Arch Physiol Biochem; 2008 Dec 15; 114(5):331-9. PubMed ID: 19023684
    [Abstract] [Full Text] [Related]

  • 12. Effects of H2O2 on insulin signaling the glucose transport system in mammalian skeletal muscle.
    Henriksen EJ.
    Methods Enzymol; 2013 Dec 15; 528():269-78. PubMed ID: 23849871
    [Abstract] [Full Text] [Related]

  • 13. Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle.
    Glund S, Deshmukh A, Long YC, Moller T, Koistinen HA, Caidahl K, Zierath JR, Krook A.
    Diabetes; 2007 Jun 15; 56(6):1630-7. PubMed ID: 17363741
    [Abstract] [Full Text] [Related]

  • 14. Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway.
    Chen L, Liu L, Yin J, Luo Y, Huang S.
    Int J Biochem Cell Biol; 2009 Jun 15; 41(6):1284-95. PubMed ID: 19038359
    [Abstract] [Full Text] [Related]

  • 15. Contraction activates glucose uptake and glycogen synthase normally in muscles from dexamethasone-treated rats.
    Ruzzin J, Jensen J.
    Am J Physiol Endocrinol Metab; 2005 Aug 15; 289(2):E241-50. PubMed ID: 15741240
    [Abstract] [Full Text] [Related]

  • 16. Interactions of exercise training and alpha-lipoic acid on insulin signaling in skeletal muscle of obese Zucker rats.
    Saengsirisuwan V, Perez FR, Sloniger JA, Maier T, Henriksen EJ.
    Am J Physiol Endocrinol Metab; 2004 Sep 15; 287(3):E529-36. PubMed ID: 15068957
    [Abstract] [Full Text] [Related]

  • 17. Critical role of the transient activation of p38 MAPK in the etiology of skeletal muscle insulin resistance induced by low-level in vitro oxidant stress.
    Diamond-Stanic MK, Marchionne EM, Teachey MK, Durazo DE, Kim JS, Henriksen EJ.
    Biochem Biophys Res Commun; 2011 Feb 18; 405(3):439-44. PubMed ID: 21241662
    [Abstract] [Full Text] [Related]

  • 18. Evidence that age-related changes in p38 MAP kinase contribute to the decreased steroid production by the adrenocortical cells from old rats.
    Abidi P, Leers-Sucheta S, Cortez Y, Han J, Azhar S.
    Aging Cell; 2008 Mar 18; 7(2):168-78. PubMed ID: 18241324
    [Abstract] [Full Text] [Related]

  • 19. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha.
    Yoon MJ, Lee GY, Chung JJ, Ahn YH, Hong SH, Kim JB.
    Diabetes; 2006 Sep 18; 55(9):2562-70. PubMed ID: 16936205
    [Abstract] [Full Text] [Related]

  • 20. Possible involvement of the alpha1 isoform of 5'AMP-activated protein kinase in oxidative stress-stimulated glucose transport in skeletal muscle.
    Toyoda T, Hayashi T, Miyamoto L, Yonemitsu S, Nakano M, Tanaka S, Ebihara K, Masuzaki H, Hosoda K, Inoue G, Otaka A, Sato K, Fushiki T, Nakao K.
    Am J Physiol Endocrinol Metab; 2004 Jul 18; 287(1):E166-73. PubMed ID: 15026306
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.