These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


214 related items for PubMed ID: 16895923

  • 1. Few crucial links assure checkpoint efficiency in the yeast cell-cycle network.
    Stoll G, Rougemont J, Naef F.
    Bioinformatics; 2006 Oct 15; 22(20):2539-46. PubMed ID: 16895923
    [Abstract] [Full Text] [Related]

  • 2. Genome-wide system analysis reveals stable yet flexible network dynamics in yeast.
    Gustafsson M, Hörnquist M, Björkegren J, Tegnér J.
    IET Syst Biol; 2009 Jul 15; 3(4):219-28. PubMed ID: 19640161
    [Abstract] [Full Text] [Related]

  • 3. A new framework for identifying combinatorial regulation of transcription factors: a case study of the yeast cell cycle.
    Wang J.
    J Biomed Inform; 2007 Dec 15; 40(6):707-25. PubMed ID: 17418646
    [Abstract] [Full Text] [Related]

  • 4. Mathematical model of the morphogenesis checkpoint in budding yeast.
    Ciliberto A, Novak B, Tyson JJ.
    J Cell Biol; 2003 Dec 22; 163(6):1243-54. PubMed ID: 14691135
    [Abstract] [Full Text] [Related]

  • 5. Detecting biological associations between genes based on the theory of phase synchronization.
    Kim CS, Riikonen P, Salakoski T.
    Biosystems; 2008 May 22; 92(2):99-113. PubMed ID: 18289772
    [Abstract] [Full Text] [Related]

  • 6. Superstability of the yeast cell-cycle dynamics: ensuring causality in the presence of biochemical stochasticity.
    Braunewell S, Bornholdt S.
    J Theor Biol; 2007 Apr 21; 245(4):638-43. PubMed ID: 17204290
    [Abstract] [Full Text] [Related]

  • 7. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models.
    Hirose O, Yoshida R, Imoto S, Yamaguchi R, Higuchi T, Charnock-Jones DS, Print C, Miyano S.
    Bioinformatics; 2008 Apr 01; 24(7):932-42. PubMed ID: 18292116
    [Abstract] [Full Text] [Related]

  • 8. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae.
    Chen KC, Wang TY, Tseng HH, Huang CY, Kao CY.
    Bioinformatics; 2005 Jun 15; 21(12):2883-90. PubMed ID: 15802287
    [Abstract] [Full Text] [Related]

  • 9. tRNA traffic meets a cell-cycle checkpoint.
    Weinert T, Hopper AK.
    Cell; 2007 Nov 30; 131(5):838-40. PubMed ID: 18045528
    [Abstract] [Full Text] [Related]

  • 10. Identification of transcription factor cooperativity via stochastic system model.
    Chang YH, Wang YC, Chen BS.
    Bioinformatics; 2006 Sep 15; 22(18):2276-82. PubMed ID: 16844711
    [Abstract] [Full Text] [Related]

  • 11. The cell cycle DB: a systems biology approach to cell cycle analysis.
    Alfieri R, Merelli I, Mosca E, Milanesi L.
    Nucleic Acids Res; 2008 Jan 15; 36(Database issue):D641-5. PubMed ID: 18160409
    [Abstract] [Full Text] [Related]

  • 12. Representing perturbed dynamics in biological network models.
    Stoll G, Rougemont J, Naef F.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul 15; 76(1 Pt 1):011917. PubMed ID: 17677504
    [Abstract] [Full Text] [Related]

  • 13. Are we overestimating the number of cell-cycling genes? The impact of background models on time-series analysis.
    Futschik ME, Herzel H.
    Bioinformatics; 2008 Apr 15; 24(8):1063-9. PubMed ID: 18310054
    [Abstract] [Full Text] [Related]

  • 14. [Participation of SRM5/CDC28, SRM8/NET1, and SRM12/HFI1 genes in checkpoint control in yeast Saccharomyces cerevisiae].
    Kadyshevskaia EIu, Koltovaia NA.
    Genetika; 2009 Apr 15; 45(4):458-70. PubMed ID: 19507699
    [Abstract] [Full Text] [Related]

  • 15. The properties of hub proteins in a yeast-aggregated cell cycle network and its phase sub-networks.
    Wu X, Guo J, Zhang DY, Lin K.
    Proteomics; 2009 Oct 15; 9(20):4812-24. PubMed ID: 19743420
    [Abstract] [Full Text] [Related]

  • 16. Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle.
    Fauré A, Naldi A, Chaouiya C, Thieffry D.
    Bioinformatics; 2006 Jul 15; 22(14):e124-31. PubMed ID: 16873462
    [Abstract] [Full Text] [Related]

  • 17. Function constrains network architecture and dynamics: a case study on the yeast cell cycle Boolean network.
    Lau KY, Ganguli S, Tang C.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May 15; 75(5 Pt 1):051907. PubMed ID: 17677098
    [Abstract] [Full Text] [Related]

  • 18. Cell size at S phase initiation: an emergent property of the G1/S network.
    Barberis M, Klipp E, Vanoni M, Alberghina L.
    PLoS Comput Biol; 2007 Apr 13; 3(4):e64. PubMed ID: 17432928
    [Abstract] [Full Text] [Related]

  • 19. Docking onto chromatin via the Saccharomyces cerevisiae Rad9 Tudor domain.
    Grenon M, Costelloe T, Jimeno S, O'Shaughnessy A, Fitzgerald J, Zgheib O, Degerth L, Lowndes NF.
    Yeast; 2007 Feb 13; 24(2):105-19. PubMed ID: 17243194
    [Abstract] [Full Text] [Related]

  • 20. Logical analysis of the budding yeast cell cycle.
    Irons DJ.
    J Theor Biol; 2009 Apr 21; 257(4):543-59. PubMed ID: 19185585
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.