These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


204 related items for PubMed ID: 16901105

  • 1. Reconstruction of gene regulatory networks under the finite state linear model.
    Ruklisa D, Brazma A, Viksna J.
    Genome Inform; 2005; 16(2):225-36. PubMed ID: 16901105
    [Abstract] [Full Text] [Related]

  • 2. EXAMINE: a computational approach to reconstructing gene regulatory networks.
    Deng X, Geng H, Ali H.
    Biosystems; 2005 Aug; 81(2):125-36. PubMed ID: 15951103
    [Abstract] [Full Text] [Related]

  • 3. A computational algebra approach to the reverse engineering of gene regulatory networks.
    Laubenbacher R, Stigler B.
    J Theor Biol; 2004 Aug 21; 229(4):523-37. PubMed ID: 15246788
    [Abstract] [Full Text] [Related]

  • 4. Structural systems identification of genetic regulatory networks.
    Xiong H, Choe Y.
    Bioinformatics; 2008 Feb 15; 24(4):553-60. PubMed ID: 18175769
    [Abstract] [Full Text] [Related]

  • 5. Reverse engineering of dynamic networks.
    Stigler B, Jarrah A, Stillman M, Laubenbacher R.
    Ann N Y Acad Sci; 2007 Dec 15; 1115():168-77. PubMed ID: 17925347
    [Abstract] [Full Text] [Related]

  • 6. List-decoding methods for inferring polynomials in finite dynamical gene network models.
    Dingel J, Milenkovic O.
    Bioinformatics; 2009 Jul 01; 25(13):1686-93. PubMed ID: 19401400
    [Abstract] [Full Text] [Related]

  • 7. Stochastic models and numerical algorithms for a class of regulatory gene networks.
    Fournier T, Gabriel JP, Pasquier J, Mazza C, Galbete J, Mermod N.
    Bull Math Biol; 2009 Aug 01; 71(6):1394-431. PubMed ID: 19387744
    [Abstract] [Full Text] [Related]

  • 8. Network inference by combining biologically motivated regulatory constraints with penalized regression.
    Parisi F, Koeppl H, Naef F.
    Ann N Y Acad Sci; 2009 Mar 01; 1158():114-24. PubMed ID: 19348637
    [Abstract] [Full Text] [Related]

  • 9. An adjustable aperiodic model class of genomic interactions using continuous time Boolean networks (Boolean delay equations).
    Oktem H, Pearson R, Egiazarian K.
    Chaos; 2003 Dec 01; 13(4):1167-74. PubMed ID: 14604408
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Replaying the evolutionary tape: biomimetic reverse engineering of gene networks.
    Marbach D, Mattiussi C, Floreano D.
    Ann N Y Acad Sci; 2009 Mar 01; 1158():234-45. PubMed ID: 19348645
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Biologically meaningful update rules increase the critical connectivity of generalized Kauffman networks.
    Wittmann DM, Marr C, Theis FJ.
    J Theor Biol; 2010 Oct 07; 266(3):436-48. PubMed ID: 20654629
    [Abstract] [Full Text] [Related]

  • 18. Modelling the evolution of genetic regulatory networks.
    Quayle AP, Bullock S.
    J Theor Biol; 2006 Feb 21; 238(4):737-53. PubMed ID: 16095624
    [Abstract] [Full Text] [Related]

  • 19. Reverse engineering of gene networks with LASSO and nonlinear basis functions.
    Gustafsson M, Hörnquist M, Lundström J, Björkegren J, Tegnér J.
    Ann N Y Acad Sci; 2009 Mar 21; 1158():265-75. PubMed ID: 19348648
    [Abstract] [Full Text] [Related]

  • 20. Dynamical properties of a boolean model of gene regulatory network with memory.
    Graudenzi A, Serra R, Villani M, Damiani C, Colacci A, Kauffman SA.
    J Comput Biol; 2011 Oct 21; 18(10):1291-303. PubMed ID: 21214342
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.