These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
231 related items for PubMed ID: 16904884
1. Methane and carbon dioxide emission in a two-phase olive oil mill sludge windrow pile during composting. Manios T, Maniadakis K, Boutzakis P, Naziridis Y, Lasaridi K, Markakis G, Stentiford EI. Waste Manag; 2007; 27(9):1092-8. PubMed ID: 16904884 [Abstract] [Full Text] [Related]
2. Efforts to explain and control the prolonged thermophilic period in two-phase olive oil mill sludge composting. Manios T, Maniadakis K, Kalogeraki M, Mari E, Stratakis E, Terzakis S, Boytzakis P, Naziridis Y, Zampetakis L. Biodegradation; 2006 Jun; 17(3):285-92. PubMed ID: 16715407 [Abstract] [Full Text] [Related]
3. The role of bulking agent in pile methane and carbon dioxide concentration during wastewater sludge windrow composting. Georgaki I, Tsamoukas A, Sakkas N, Ververidis F, Trantas E, Kyriacou A, Lasaridi KE, Manios T. Water Environ Res; 2009 Jan; 81(1):5-12. PubMed ID: 19280894 [Abstract] [Full Text] [Related]
4. Greenhouse gas emissions during composting of two-phase olive mill wastes with different agroindustrial by-products. Sánchez-Monedero MA, Serramiá N, Civantos CG, Fernández-Hernández A, Roig A. Chemosphere; 2010 Sep; 81(1):18-25. PubMed ID: 20708773 [Abstract] [Full Text] [Related]
5. Emission of methane and carbon dioxide and earthworm survival during composting of pharmaceutical sludge and spent mycelia. Majumdar D, Patel J, Bhatt N, Desai P. Bioresour Technol; 2006 Mar; 97(4):648-58. PubMed ID: 15907381 [Abstract] [Full Text] [Related]
6. Pile mixing increases greenhouse gas emissions during composting of dairy manure. Ahn HK, Mulbry W, White JW, Kondrad SL. Bioresour Technol; 2011 Feb; 102(3):2904-9. PubMed ID: 21111610 [Abstract] [Full Text] [Related]
7. Linking soil O2, CO2, and CH4 concentrations in a Wetland soil: implications for CO2 and CH4 fluxes. Elberling B, Askaer L, Jørgensen CJ, Joensen HP, Kühl M, Glud RN, Lauritsen FR. Environ Sci Technol; 2011 Apr 15; 45(8):3393-9. PubMed ID: 21413790 [Abstract] [Full Text] [Related]
8. Influence of olive mill wastewater in composting and impact of the compost on a Swiss chard crop and soil properties. Paredes C, Cegarra J, Bernal MP, Roig A. Environ Int; 2005 Feb 15; 31(2):305-12. PubMed ID: 15661299 [Abstract] [Full Text] [Related]
9. Oil refinery sludge and green waste simulated windrow composting. Fountoulakis MS, Terzakis S, Georgaki E, Drakopoulou S, Sabathianakis I, Kouzoulakis M, Manios T. Biodegradation; 2009 Apr 15; 20(2):177-89. PubMed ID: 18670891 [Abstract] [Full Text] [Related]
10. Bio-degradation of olive oil husks in composting aerated piles. Baeta-Hall L, Céu Sàágua M, Lourdes Bartolomeu M, Anselmo AM, Fernanda Rosa M. Bioresour Technol; 2005 Jan 15; 96(1):69-78. PubMed ID: 15364083 [Abstract] [Full Text] [Related]
11. Enhanced composting as a way to a climate-friendly management of coffee by-products. San Martin Ruiz M, Reiser M, Kranert M. Environ Sci Pollut Res Int; 2020 Jul 15; 27(19):24312-24319. PubMed ID: 32306256 [Abstract] [Full Text] [Related]
12. Greenhouse gas emission during storage of pig manure on a pilot scale. Wolter M, Prayitno S, Schuchardt F. Bioresour Technol; 2004 Dec 15; 95(3):235-44. PubMed ID: 15288265 [Abstract] [Full Text] [Related]
13. Biochemical changes and GHG emissions during composting of lignocellulosic residues with different N-rich by-products. Cayuela ML, Sánchez-Monedero MA, Roig A, Sinicco T, Mondini C. Chemosphere; 2012 Jun 15; 88(2):196-203. PubMed ID: 22464856 [Abstract] [Full Text] [Related]
14. Quantification of methane emissions from full-scale open windrow composting of biowaste using an inverse dispersion technique. Hrad M, Binner E, Piringer M, Huber-Humer M. Waste Manag; 2014 Dec 15; 34(12):2445-53. PubMed ID: 25242603 [Abstract] [Full Text] [Related]
15. CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment. Hobson AM, Frederickson J, Dise NB. Waste Manag; 2005 Dec 15; 25(4):345-52. PubMed ID: 15869976 [Abstract] [Full Text] [Related]
16. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge. Domínguez A, Fernández Y, Fidalgo B, Pis JJ, Menéndez JA. Chemosphere; 2008 Jan 15; 70(3):397-403. PubMed ID: 17692361 [Abstract] [Full Text] [Related]
17. Methane and nitrous oxide emissions from shallow windrow piles for biostabilisation of municipal solid waste. Wangyao K, Sutthasil N, Chiemchaisri C. J Air Waste Manag Assoc; 2021 May 15; 71(5):650-660. PubMed ID: 33481686 [Abstract] [Full Text] [Related]
18. The fulvic acid fraction as it changes in the mature phase of vegetable oil-mill sludge and domestic waste composting. Abouelwafa R, Amir S, Souabi S, Winterton P, Ndira V, Revel JC, Hafidi M. Bioresour Technol; 2008 Sep 15; 99(14):6112-8. PubMed ID: 18230415 [Abstract] [Full Text] [Related]
19. Methane production and consumption in an active volcanic environment of Southern Italy. Castaldi S, Tedesco D. Chemosphere; 2005 Jan 15; 58(2):131-9. PubMed ID: 15571745 [Abstract] [Full Text] [Related]
20. Pile composting of two-phase centrifuged olive husk residues: technical solutions and quality of cured compost. Alfano G, Belli C, Lustrato G, Ranalli G. Bioresour Technol; 2008 Jul 15; 99(11):4694-701. PubMed ID: 17986394 [Abstract] [Full Text] [Related] Page: [Next] [New Search]