These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


548 related items for PubMed ID: 1690861

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 43. Effects of substrate structure on the kinetics of circle opening reactions of the self-splicing intervening sequence from Tetrahymena thermophila: evidence for substrate and Mg2+ binding interactions.
    Sugimoto N, Tomka M, Kierzek R, Bevilacqua PC, Turner DH.
    Nucleic Acids Res; 1989 Jan 11; 17(1):355-71. PubMed ID: 2643083
    [Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45. The mechanism of group I self-splicing: an internal guide sequence can be provided in trans.
    Winter AJ, Groot Koerkamp MJ, Tabak HF.
    EMBO J; 1990 Jun 11; 9(6):1923-8. PubMed ID: 2189725
    [Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47. Directed evolution of an RNA enzyme.
    Beaudry AA, Joyce GF.
    Science; 1992 Jul 31; 257(5070):635-41. PubMed ID: 1496376
    [Abstract] [Full Text] [Related]

  • 48. Tetrahymena ribozyme disrupts rRNA processing in yeast.
    Good L, Elela SA, Nazar RN.
    J Biol Chem; 1994 Sep 02; 269(35):22169-72. PubMed ID: 8071340
    [Abstract] [Full Text] [Related]

  • 49. Sequence-specific endoribonuclease activity of the Tetrahymena ribozyme: enhanced cleavage of certain oligonucleotide substrates that form mismatched ribozyme-substrate complexes.
    Zaug AJ, Grosshans CA, Cech TR.
    Biochemistry; 1988 Dec 13; 27(25):8924-31. PubMed ID: 3069131
    [Abstract] [Full Text] [Related]

  • 50. Defining the inside and outside of a catalytic RNA molecule.
    Latham JA, Cech TR.
    Science; 1989 Jul 21; 245(4915):276-82. PubMed ID: 2501870
    [Abstract] [Full Text] [Related]

  • 51. A self-splicing group I intron in the nuclear pre-rRNA of the green alga, Ankistrodesmus stipitatus.
    Dávila-Aponte JA, Huss VA, Sogin ML, Cech TR.
    Nucleic Acids Res; 1991 Aug 25; 19(16):4429-36. PubMed ID: 1886767
    [Abstract] [Full Text] [Related]

  • 52. The intervening sequence RNA of Tetrahymena is an enzyme.
    Zaug AJ, Cech TR.
    Science; 1986 Jan 31; 231(4737):470-5. PubMed ID: 3941911
    [Abstract] [Full Text] [Related]

  • 53. Role of conserved sequence elements 9L and 2 in self-splicing of the Tetrahymena ribosomal RNA precursor.
    Burke JM, Irvine KD, Kaneko KJ, Kerker BJ, Oettgen AB, Tierney WM, Williamson CL, Zaug AJ, Cech TR.
    Cell; 1986 Apr 25; 45(2):167-76. PubMed ID: 2421916
    [Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56. Catalytic activity is retained in the Tetrahymena group I intron despite removal of the large extension of element P5.
    Joyce GF, van der Horst G, Inoue T.
    Nucleic Acids Res; 1989 Oct 11; 17(19):7879-89. PubMed ID: 2477801
    [Abstract] [Full Text] [Related]

  • 57. Characterization of an authentic intermediate in the self-splicing process of ribosomal precursor RNA in macronuclei of Tetrahymena thermophila.
    Kister KP, Eckert WA.
    Nucleic Acids Res; 1987 Mar 11; 15(5):1905-20. PubMed ID: 3645543
    [Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59. Structure of the catalytic core of the Tetrahymena ribozyme as indicated by reactive abbreviated forms of the molecule.
    Joyce GF, Inoue T.
    Nucleic Acids Res; 1987 Dec 10; 15(23):9825-40. PubMed ID: 3697083
    [Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 28.