These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


588 related items for PubMed ID: 16915285

  • 21. Unwinding of a skyrmion lattice by magnetic monopoles.
    Milde P, Köhler D, Seidel J, Eng LM, Bauer A, Chacon A, Kindervater J, Mühlbauer S, Pfleiderer C, Buhrandt S, Schütte C, Rosch A.
    Science; 2013 May 31; 340(6136):1076-80. PubMed ID: 23723232
    [Abstract] [Full Text] [Related]

  • 22. Observation of skyrmions in a multiferroic material.
    Seki S, Yu XZ, Ishiwata S, Tokura Y.
    Science; 2012 Apr 13; 336(6078):198-201. PubMed ID: 22499941
    [Abstract] [Full Text] [Related]

  • 23. Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet.
    Karube K, White JS, Morikawa D, Dewhurst CD, Cubitt R, Kikkawa A, Yu X, Tokunaga Y, Arima TH, Rønnow HM, Tokura Y, Taguchi Y.
    Sci Adv; 2018 Sep 13; 4(9):eaar7043. PubMed ID: 30225364
    [Abstract] [Full Text] [Related]

  • 24. Multiplet of Skyrmion States on a Curvilinear Defect: Reconfigurable Skyrmion Lattices.
    Kravchuk VP, Sheka DD, Kákay A, Volkov OM, Rößler UK, van den Brink J, Makarov D, Gaididei Y.
    Phys Rev Lett; 2018 Feb 09; 120(6):067201. PubMed ID: 29481278
    [Abstract] [Full Text] [Related]

  • 25. Magnetic Skyrmion Materials.
    Tokura Y, Kanazawa N.
    Chem Rev; 2021 Mar 10; 121(5):2857-2897. PubMed ID: 33164494
    [Abstract] [Full Text] [Related]

  • 26. Theory of antiskyrmions in magnets.
    Koshibae W, Nagaosa N.
    Nat Commun; 2016 Jan 29; 7():10542. PubMed ID: 26821932
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Theory of current-driven skyrmions in disordered magnets.
    Koshibae W, Nagaosa N.
    Sci Rep; 2018 Apr 20; 8(1):6328. PubMed ID: 29679018
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Topological excitations in a kagome magnet.
    Pereiro M, Yudin D, Chico J, Etz C, Eriksson O, Bergman A.
    Nat Commun; 2014 Sep 08; 5():4815. PubMed ID: 25198354
    [Abstract] [Full Text] [Related]

  • 32. Magnetic skyrmions in FePt nanoparticles having Reuleaux 3D geometry: a micromagnetic simulation study.
    Stavrou VD, Kourounis D, Dimakopoulos K, Panagiotopoulos I, Gergidis LN.
    Nanoscale; 2019 Nov 14; 11(42):20102-20114. PubMed ID: 31612890
    [Abstract] [Full Text] [Related]

  • 33. Noncentrosymmetric Magnets Hosting Magnetic Skyrmions.
    Kanazawa N, Seki S, Tokura Y.
    Adv Mater; 2017 Jul 14; 29(25):. PubMed ID: 28306166
    [Abstract] [Full Text] [Related]

  • 34. Electronically soft phases in manganites.
    Milward GC, Calderón MJ, Littlewood PB.
    Nature; 2005 Feb 10; 433(7026):607-10. PubMed ID: 15703740
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Static three-dimensional topological solitons in fluid chiral ferromagnets and colloids.
    Ackerman PJ, Smalyukh II.
    Nat Mater; 2017 Apr 10; 16(4):426-432. PubMed ID: 27992419
    [Abstract] [Full Text] [Related]

  • 37. A mechanism to pin skyrmions in chiral magnets.
    Liu YH, Li YQ.
    J Phys Condens Matter; 2013 Feb 20; 25(7):076005. PubMed ID: 23339842
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Discovery of stable skyrmionic state in ferroelectric nanocomposites.
    Nahas Y, Prokhorenko S, Louis L, Gui Z, Kornev I, Bellaiche L.
    Nat Commun; 2015 Oct 05; 6():8542. PubMed ID: 26436432
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 30.