These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


209 related items for PubMed ID: 16916901

  • 1. Tuning in to cochlear hair cells.
    Kros CJ, Evans MG.
    J Physiol; 2006 Oct 01; 576(Pt 1):7-9. PubMed ID: 16916901
    [No Abstract] [Full Text] [Related]

  • 2. [Conversion of sound into auditory nerve action potentials].
    Encke J, Kreh J, Völk F, Hemmert W.
    HNO; 2016 Nov 01; 64(11):808-814. PubMed ID: 27785535
    [Abstract] [Full Text] [Related]

  • 3. The cochlea--new insights into the conversion of sound into electrical signals.
    Evans MG, Kros CJ.
    J Physiol; 2006 Oct 01; 576(Pt 1):3-5. PubMed ID: 16916902
    [No Abstract] [Full Text] [Related]

  • 4. Active hair bundle movements in auditory hair cells.
    Fettiplace R.
    J Physiol; 2006 Oct 01; 576(Pt 1):29-36. PubMed ID: 16887874
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Prestin and the cochlear amplifier.
    Dallos P, Zheng J, Cheatham MA.
    J Physiol; 2006 Oct 01; 576(Pt 1):37-42. PubMed ID: 16873410
    [Abstract] [Full Text] [Related]

  • 7. Hair cell and neural contributions to the cochlear summating potential.
    Pappa AK, Hutson KA, Scott WC, Wilson JD, Fox KE, Masood MM, Giardina CK, Pulver SH, Grana GD, Askew C, Fitzpatrick DC.
    J Neurophysiol; 2019 Jun 01; 121(6):2163-2180. PubMed ID: 30943095
    [Abstract] [Full Text] [Related]

  • 8. Cochlear amplification, outer hair cells and prestin.
    Dallos P.
    Curr Opin Neurobiol; 2008 Aug 01; 18(4):370-6. PubMed ID: 18809494
    [Abstract] [Full Text] [Related]

  • 9. Development of cochlear amplification, frequency tuning, and two-tone suppression in the mouse.
    Song L, McGee J, Walsh EJ.
    J Neurophysiol; 2008 Jan 01; 99(1):344-55. PubMed ID: 17989242
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells.
    Kennedy HJ, Evans MG, Crawford AC, Fettiplace R.
    Nat Neurosci; 2003 Aug 01; 6(8):832-6. PubMed ID: 12872124
    [Abstract] [Full Text] [Related]

  • 14. An intrinsic frequency limit to the cochlear amplifier.
    Gale JE, Ashmore JF.
    Nature; 1997 Sep 04; 389(6646):63-6. PubMed ID: 9288966
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti.
    Kaltenbach JA, Falzarano PR.
    J Comp Neurol; 1994 Feb 01; 340(1):87-97. PubMed ID: 8176004
    [Abstract] [Full Text] [Related]

  • 17. The CaV3.1 T-type Ca2+channel contributes to voltage-dependent calcium currents in rat outer hair cells.
    Inagaki A, Ugawa S, Yamamura H, Murakami S, Shimada S.
    Brain Res; 2008 Mar 27; 1201():68-77. PubMed ID: 18294617
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Effects of cochlear loading on the motility of active outer hair cells.
    Ó Maoiléidigh D, Hudspeth AJ.
    Proc Natl Acad Sci U S A; 2013 Apr 02; 110(14):5474-9. PubMed ID: 23509256
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.