These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 16918472

  • 1. Computational models for predicting interactions with cytochrome p450 enzyme.
    Arimoto R.
    Curr Top Med Chem; 2006; 6(15):1609-18. PubMed ID: 16918472
    [Abstract] [Full Text] [Related]

  • 2. Computational prediction of cytochrome P450 inhibition and induction.
    Kato H.
    Drug Metab Pharmacokinet; 2020 Feb; 35(1):30-44. PubMed ID: 31902468
    [Abstract] [Full Text] [Related]

  • 3. Insights on cytochrome p450 enzymes and inhibitors obtained through QSAR studies.
    Sridhar J, Liu J, Foroozesh M, Stevens CL.
    Molecules; 2012 Aug 03; 17(8):9283-305. PubMed ID: 22864238
    [Abstract] [Full Text] [Related]

  • 4. Application of support vector machines to in silico prediction of cytochrome p450 enzyme substrates and inhibitors.
    Yap CW, Xue Y, Li ZR, Chen YZ.
    Curr Top Med Chem; 2006 Aug 03; 6(15):1593-607. PubMed ID: 16918471
    [Abstract] [Full Text] [Related]

  • 5. In vitro assessment of metabolic drug-drug interaction potential of apixaban through cytochrome P450 phenotyping, inhibition, and induction studies.
    Wang L, Zhang D, Raghavan N, Yao M, Ma L, Frost CE, Maxwell BD, Chen SY, He K, Goosen TC, Humphreys WG, Grossman SJ.
    Drug Metab Dispos; 2010 Mar 03; 38(3):448-58. PubMed ID: 19940026
    [Abstract] [Full Text] [Related]

  • 6. In vitro metabolism and drug interaction potential of a new highly potent anti-cytomegalovirus molecule, CMV423 (2-chloro 3-pyridine 3-yl 5,6,7,8-tetrahydroindolizine I-carboxamide).
    Bournique B, Lambert N, Boukaiba R, Martinet M.
    Br J Clin Pharmacol; 2001 Jul 03; 52(1):53-63. PubMed ID: 11453890
    [Abstract] [Full Text] [Related]

  • 7. Pharmacophore and three-dimensional quantitative structure activity relationship methods for modeling cytochrome p450 active sites.
    Ekins S, de Groot MJ, Jones JP.
    Drug Metab Dispos; 2001 Jul 03; 29(7):936-44. PubMed ID: 11408357
    [Abstract] [Full Text] [Related]

  • 8. Modulation of cytochrome-P450 inhibition (CYP) in drug discovery: a medicinal chemistry perspective.
    Kumar S, Sharma R, Roychowdhury A.
    Curr Med Chem; 2012 Jul 03; 19(21):3605-21. PubMed ID: 22680629
    [Abstract] [Full Text] [Related]

  • 9. Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers.
    Cheng F, Yu Y, Shen J, Yang L, Li W, Liu G, Lee PW, Tang Y.
    J Chem Inf Model; 2011 May 23; 51(5):996-1011. PubMed ID: 21491913
    [Abstract] [Full Text] [Related]

  • 10. CYPlebrity: Machine learning models for the prediction of inhibitors of cytochrome P450 enzymes.
    Plonka W, Stork C, Šícho M, Kirchmair J.
    Bioorg Med Chem; 2021 Sep 15; 46():116388. PubMed ID: 34488021
    [Abstract] [Full Text] [Related]

  • 11. Generalized proteochemometric model of multiple cytochrome p450 enzymes and their inhibitors.
    Kontijevskis A, Komorowski J, Wikberg JE.
    J Chem Inf Model; 2008 Sep 15; 48(9):1840-50. PubMed ID: 18693719
    [Abstract] [Full Text] [Related]

  • 12. Inhibition and induction of cytochrome P450 and the clinical implications.
    Lin JH, Lu AY.
    Clin Pharmacokinet; 1998 Nov 15; 35(5):361-90. PubMed ID: 9839089
    [Abstract] [Full Text] [Related]

  • 13. Identification of the human cytochrome P450 isoforms mediating in vitro N-dealkylation of perphenazine.
    Olesen OV, Linnet K.
    Br J Clin Pharmacol; 2000 Dec 15; 50(6):563-71. PubMed ID: 11136295
    [Abstract] [Full Text] [Related]

  • 14. In vitro sulfoxidation of thioether compounds by human cytochrome P450 and flavin-containing monooxygenase isoforms with particular reference to the CYP2C subfamily.
    Usmani KA, Karoly ED, Hodgson E, Rose RL.
    Drug Metab Dispos; 2004 Mar 15; 32(3):333-9. PubMed ID: 14977868
    [Abstract] [Full Text] [Related]

  • 15. Pharmacophore modeling for ADME.
    Guner OF, Bowen JP.
    Curr Top Med Chem; 2013 Mar 15; 13(11):1327-42. PubMed ID: 23675939
    [Abstract] [Full Text] [Related]

  • 16. Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A4.
    Spracklin DK, Thummel KE, Kharasch ED.
    Drug Metab Dispos; 1996 Sep 15; 24(9):976-83. PubMed ID: 8886607
    [Abstract] [Full Text] [Related]

  • 17. Computational approaches for predicting CYP-related metabolism properties in the screening of new drugs.
    Crivori P, Poggesi I.
    Eur J Med Chem; 2006 Jul 15; 41(7):795-808. PubMed ID: 16644065
    [Abstract] [Full Text] [Related]

  • 18. Involvement of multiple cytochrome P450 and UDP-glucuronosyltransferase enzymes in the in vitro metabolism of muraglitazar.
    Zhang D, Wang L, Chandrasena G, Ma L, Zhu M, Zhang H, Davis CD, Humphreys WG.
    Drug Metab Dispos; 2007 Jan 15; 35(1):139-49. PubMed ID: 17062778
    [Abstract] [Full Text] [Related]

  • 19. Three- and four-dimensional-quantitative structure activity relationship (3D/4D-QSAR) analyses of CYP2C9 inhibitors.
    Ekins S, Bravi G, Binkley S, Gillespie JS, Ring BJ, Wikel JH, Wrighton SA.
    Drug Metab Dispos; 2000 Aug 15; 28(8):994-1002. PubMed ID: 10901712
    [Abstract] [Full Text] [Related]

  • 20. In vitro inhibitory mechanisms and molecular docking of 1'-S-1'-acetoxychavicol acetate on human cytochrome P450 enzymes.
    Haque AKMM, Leong KH, Lo YL, Awang K, Nagoor NH.
    Phytomedicine; 2017 Jul 15; 31():1-9. PubMed ID: 28606510
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.