These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


233 related items for PubMed ID: 16919656

  • 1. Quantitative structure-retention relationship studies using immobilized artificial membrane chromatography I: amended linear solvation energy relationships with the introduction of a molecular electronic factor.
    Li J, Sun J, Cui S, He Z.
    J Chromatogr A; 2006 Nov 03; 1132(1-2):174-82. PubMed ID: 16919656
    [Abstract] [Full Text] [Related]

  • 2. Comparison between immobilized artificial membrane (IAM) HPLC data and lipophilicity in n-octanol for quinolone antibacterial agents.
    Barbato F, Cirocco V, Grumetto L, Immacolata La Rotonda M.
    Eur J Pharm Sci; 2007 Aug 03; 31(5):288-97. PubMed ID: 17540545
    [Abstract] [Full Text] [Related]

  • 3. Quantitative structure-retention relationship studies with immobilized artificial membrane chromatography II: partial least squares regression.
    Li J, Sun J, He Z.
    J Chromatogr A; 2007 Jan 26; 1140(1-2):174-9. PubMed ID: 17161410
    [Abstract] [Full Text] [Related]

  • 4. Relationship between immobilized artificial membrane chromatographic retention and human oral absorption of structurally diverse drugs.
    Kotecha J, Shah S, Rathod I, Subbaiah G.
    Int J Pharm; 2007 Mar 21; 333(1-2):127-35. PubMed ID: 17095172
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Immobilized artificial membrane chromatography: quantitative structure-retention relationships of structurally diverse drugs.
    Luco JM, Salinas AP, Torriero AA, Vázquez RN, Raba J, Marchevsky E.
    J Chem Inf Comput Sci; 2003 Mar 21; 43(6):2129-36. PubMed ID: 14632465
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Different retention behavior of structurally diverse basic and neutral drugs in immobilized artificial membrane and reversed-phase high performance liquid chromatography: comparison with octanol-water partitioning.
    Vrakas D, Giaginis C, Tsantili-Kakoulidou A.
    J Chromatogr A; 2006 May 26; 1116(1-2):158-64. PubMed ID: 16595136
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Characterization of the retention behavior of organic and pharmaceutical drug molecules on an immobilized artificial membrane column with the Abraham model.
    Sprunger L, Blake-Taylor BH, Wairegi A, Acree WE, Abraham MH.
    J Chromatogr A; 2007 Aug 10; 1160(1-2):235-45. PubMed ID: 17543312
    [Abstract] [Full Text] [Related]

  • 12. Electrostatic interactions and ionization effect in immobilized artificial membrane retention. A comparative study with octanol-water partitioning.
    Vrakas D, Giaginis C, Tsantili-Kakoulidou A.
    J Chromatogr A; 2008 Apr 11; 1187(1-2):67-78. PubMed ID: 18291408
    [Abstract] [Full Text] [Related]

  • 13. Lipophilic and electrostatic forces encoded in IAM-HPLC indexes of basic drugs: their role in membrane partition and their relationships with BBB passage data.
    Grumetto L, Carpentiero C, Barbato F.
    Eur J Pharm Sci; 2012 Apr 11; 45(5):685-92. PubMed ID: 22306648
    [Abstract] [Full Text] [Related]

  • 14. Prediction of immobilized artificial membrane-liquid chromatography retention of some drugs from their molecular structure descriptors and LFER parameters.
    Fatemi MH, Shamseddin H.
    J Sep Sci; 2009 Oct 11; 32(20):3395-402. PubMed ID: 19750506
    [Abstract] [Full Text] [Related]

  • 15. Immobilized Artificial Membrane HPLC Derived Parameters vs PAMPA-BBB Data in Estimating in Situ Measured Blood-Brain Barrier Permeation of Drugs.
    Grumetto L, Russo G, Barbato F.
    Mol Pharm; 2016 Aug 01; 13(8):2808-16. PubMed ID: 27377191
    [Abstract] [Full Text] [Related]

  • 16. Prediction of drug absorption based on immobilized artificial membrane (IAM) chromatography separation and calculated molecular descriptors.
    Yen TE, Agatonovic-Kustrin S, Evans AM, Nation RL, Ryand J.
    J Pharm Biomed Anal; 2005 Jul 01; 38(3):472-8. PubMed ID: 15890485
    [Abstract] [Full Text] [Related]

  • 17. Lipophilic and polar interaction forces between acidic drugs and membrane phospholipids encoded in IAM-HPLC indexes: their role in membrane partition and relationships with BBB permeation data.
    Grumetto L, Carpentiero C, Di Vaio P, Frecentese F, Barbato F.
    J Pharm Biomed Anal; 2013 Mar 05; 75():165-72. PubMed ID: 23261809
    [Abstract] [Full Text] [Related]

  • 18. The use of biopartitioning micellar chromatography and immobilized artificial membrane column for in silico and in vitro determination of blood-brain barrier penetration of phenols.
    Stępnik KE, Malinowska I.
    J Chromatogr A; 2013 Apr 19; 1286():127-36. PubMed ID: 23506703
    [Abstract] [Full Text] [Related]

  • 19. Lipophilicity parameter from high-performance liquid chromatography on an immobilized artificial membrane column and its relationships to bioactivity of the group of 2,4-dihydroxythiobenzanilides.
    Jóźwiak K, Szumiło H, Senczyna B.
    Acta Pol Pharm; 2002 Apr 19; 59(5):341-6. PubMed ID: 12602794
    [Abstract] [Full Text] [Related]

  • 20. Estimation of phospholipophilicity of 1-[3-(arylpiperazin-1-yl)-propyl]-pyrrolidin-2-one derivatives on immobilized artificial membrane stationary phase and its correlation with biological data.
    Kulig K, Malawska B.
    Biomed Chromatogr; 2006 Nov 19; 20(11):1129-35. PubMed ID: 16708395
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.