These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


181 related items for PubMed ID: 16921532

  • 1. Immobilized fibrinogen in PEG hydrogels does not improve chondrocyte-mediated matrix deposition in response to mechanical stimulation.
    Schmidt O, Mizrahi J, Elisseeff J, Seliktar D.
    Biotechnol Bioeng; 2006 Dec 20; 95(6):1061-9. PubMed ID: 16921532
    [Abstract] [Full Text] [Related]

  • 2. The differential effect of scaffold composition and architecture on chondrocyte response to mechanical stimulation.
    Appelman TP, Mizrahi J, Elisseeff JH, Seliktar D.
    Biomaterials; 2009 Feb 20; 30(4):518-25. PubMed ID: 19000634
    [Abstract] [Full Text] [Related]

  • 3. The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes.
    Appelman TP, Mizrahi J, Elisseeff JH, Seliktar D.
    Biomaterials; 2011 Feb 20; 32(6):1508-16. PubMed ID: 21093907
    [Abstract] [Full Text] [Related]

  • 4. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain.
    Bryant SJ, Anseth KS, Lee DA, Bader DL.
    J Orthop Res; 2004 Sep 20; 22(5):1143-9. PubMed ID: 15304291
    [Abstract] [Full Text] [Related]

  • 5. Mechanical stimulation of TMJ condylar chondrocytes encapsulated in PEG hydrogels.
    Nicodemus GD, Villanueva I, Bryant SJ.
    J Biomed Mater Res A; 2007 Nov 20; 83(2):323-31. PubMed ID: 17437304
    [Abstract] [Full Text] [Related]

  • 6. Real-time monitoring of force response measured in mechanically stimulated tissue-engineered cartilage.
    Preiss-Bloom O, Mizrahi J, Elisseeff J, Seliktar D.
    Artif Organs; 2009 Apr 20; 33(4):318-27. PubMed ID: 19335408
    [Abstract] [Full Text] [Related]

  • 7. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering.
    Hwang Y, Sangaj N, Varghese S.
    Tissue Eng Part A; 2010 Oct 20; 16(10):3033-41. PubMed ID: 20486791
    [Abstract] [Full Text] [Related]

  • 8. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.
    Almany L, Seliktar D.
    Biomaterials; 2005 May 20; 26(15):2467-77. PubMed ID: 15585249
    [Abstract] [Full Text] [Related]

  • 9. Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds.
    Kisiday JD, Jin M, DiMicco MA, Kurz B, Grodzinsky AJ.
    J Biomech; 2004 May 20; 37(5):595-604. PubMed ID: 15046988
    [Abstract] [Full Text] [Related]

  • 10. Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering.
    Lee WK, Ichi T, Ooya T, Yamamoto T, Katoh M, Yui N.
    J Biomed Mater Res A; 2003 Dec 15; 67(4):1087-92. PubMed ID: 14624493
    [Abstract] [Full Text] [Related]

  • 11. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production.
    Bryant SJ, Bender RJ, Durand KL, Anseth KS.
    Biotechnol Bioeng; 2004 Jun 30; 86(7):747-55. PubMed ID: 15162450
    [Abstract] [Full Text] [Related]

  • 12. Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel.
    Lee HJ, Lee JS, Chansakul T, Yu C, Elisseeff JH, Yu SM.
    Biomaterials; 2006 Oct 30; 27(30):5268-76. PubMed ID: 16797067
    [Abstract] [Full Text] [Related]

  • 13. In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application.
    Park JS, Woo DG, Sun BK, Chung HM, Im SJ, Choi YM, Park K, Huh KM, Park KH.
    J Control Release; 2007 Dec 04; 124(1-2):51-9. PubMed ID: 17904679
    [Abstract] [Full Text] [Related]

  • 14. Ion-channel regulation of chondrocyte matrix synthesis in 3D culture under static and dynamic compression.
    Mouw JK, Imler SM, Levenston ME.
    Biomech Model Mechanobiol; 2007 Jan 04; 6(1-2):33-41. PubMed ID: 16767453
    [Abstract] [Full Text] [Related]

  • 15. Characterization of photo-cross-linked oligo[poly(ethylene glycol) fumarate] hydrogels for cartilage tissue engineering.
    Dadsetan M, Szatkowski JP, Yaszemski MJ, Lu L.
    Biomacromolecules; 2007 May 04; 8(5):1702-9. PubMed ID: 17419584
    [Abstract] [Full Text] [Related]

  • 16. Integration of layered chondrocyte-seeded alginate hydrogel scaffolds.
    Lee CS, Gleghorn JP, Won Choi N, Cabodi M, Stroock AD, Bonassar LJ.
    Biomaterials; 2007 Jul 04; 28(19):2987-93. PubMed ID: 17382380
    [Abstract] [Full Text] [Related]

  • 17. Cross-linking density alters early metabolic activities in chondrocytes encapsulated in poly(ethylene glycol) hydrogels and cultured in the rotating wall vessel.
    Villanueva I, Klement BJ, von Deutsch D, Bryant SJ.
    Biotechnol Bioeng; 2009 Mar 01; 102(4):1242-50. PubMed ID: 18949761
    [Abstract] [Full Text] [Related]

  • 18. The influence of ascorbic acid, TGF-beta1, and cell-mediated remodeling on the bulk mechanical properties of 3-D PEG-fibrinogen constructs.
    Kim PD, Peyton SR, VanStrien AJ, Putnam AJ.
    Biomaterials; 2009 Aug 01; 30(23-24):3854-64. PubMed ID: 19443026
    [Abstract] [Full Text] [Related]

  • 19. Incorporation of tissue-specific molecules alters chondrocyte metabolism and gene expression in photocrosslinked hydrogels.
    Bryant SJ, Arthur JA, Anseth KS.
    Acta Biomater; 2005 Mar 01; 1(2):243-52. PubMed ID: 16701801
    [Abstract] [Full Text] [Related]

  • 20. Dynamic compressive loading influences degradation behavior of PEG-PLA hydrogels.
    Nicodemus GD, Shiplet KA, Kaltz SR, Bryant SJ.
    Biotechnol Bioeng; 2009 Feb 15; 102(3):948-59. PubMed ID: 18831003
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.