These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


188 related items for PubMed ID: 16926382

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity?
    Nordby P, Saltin B, Helge JW.
    Scand J Med Sci Sports; 2006 Jun; 16(3):209-14. PubMed ID: 16643200
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Muscle fiber type I influences lipid oxidation during low-intensity exercise in moderately active middle-aged men.
    Turpeinen JP, Leppävuori J, Heinonen OJ, Kaila K, Salo J, Lilja M, Kesäniemi YA.
    Scand J Med Sci Sports; 2006 Apr; 16(2):134-40. PubMed ID: 16533352
    [Abstract] [Full Text] [Related]

  • 5. Effect of a 1-hour single bout of moderate-intensity exercise on fat oxidation kinetics.
    Chenevière X, Borrani F, Ebenegger V, Gojanovic B, Malatesta D.
    Metabolism; 2009 Dec; 58(12):1778-86. PubMed ID: 19632694
    [Abstract] [Full Text] [Related]

  • 6. Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle.
    Talanian JL, Holloway GP, Snook LA, Heigenhauser GJ, Bonen A, Spriet LL.
    Am J Physiol Endocrinol Metab; 2010 Aug; 299(2):E180-8. PubMed ID: 20484014
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Contributions of working muscle to whole body lipid metabolism are altered by exercise intensity and training.
    Friedlander AL, Jacobs KA, Fattor JA, Horning MA, Hagobian TA, Bauer TA, Wolfel EE, Brooks GA.
    Am J Physiol Endocrinol Metab; 2007 Jan; 292(1):E107-16. PubMed ID: 16896167
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Exercise training increases intramyocellular lipid and oxidative capacity in older adults.
    Pruchnic R, Katsiaras A, He J, Kelley DE, Winters C, Goodpaster BH.
    Am J Physiol Endocrinol Metab; 2004 Nov; 287(5):E857-62. PubMed ID: 15226098
    [Abstract] [Full Text] [Related]

  • 15. Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status.
    Tonkonogi M, Sahlin K.
    Acta Physiol Scand; 1997 Nov; 161(3):345-53. PubMed ID: 9401587
    [Abstract] [Full Text] [Related]

  • 16. Maximal fat oxidation during exercise in trained men.
    Achten J, Jeukendrup AE.
    Int J Sports Med; 2003 Nov; 24(8):603-8. PubMed ID: 14598198
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Quantitative and qualitative adaptation of human skeletal muscle mitochondria to hypoxic compared with normoxic training at the same relative work rate.
    Bakkman L, Sahlin K, Holmberg HC, Tonkonogi M.
    Acta Physiol (Oxf); 2007 Jul; 190(3):243-51. PubMed ID: 17521315
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Rapid down-regulation of mitochondrial fat metabolism in human muscle after training cessation is dissociated from changes in insulin sensitivity.
    Rimbert V, Vidal H, Duché P, Debard C, Giraudet C, Boirie Y, Chardigny JM, Morio B.
    FEBS Lett; 2009 Sep 03; 583(17):2927-33. PubMed ID: 19665026
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.