These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


397 related items for PubMed ID: 16931795

  • 1. Stem cell factor deficiency is vasculoprotective: unraveling a new therapeutic potential of imatinib mesylate.
    Wang CH, Anderson N, Li SH, Szmitko PE, Cherng WJ, Fedak PW, Fazel S, Li RK, Yau TM, Weisel RD, Stanford WL, Verma S.
    Circ Res; 2006 Sep 15; 99(6):617-25. PubMed ID: 16931795
    [Abstract] [Full Text] [Related]

  • 2. Stem cell factor attenuates vascular smooth muscle apoptosis and increases intimal hyperplasia after vascular injury.
    Wang CH, Verma S, Hsieh IC, Hung A, Cheng TT, Wang SY, Liu YC, Stanford WL, Weisel RD, Li RK, Cherng WJ.
    Arterioscler Thromb Vasc Biol; 2007 Mar 15; 27(3):540-7. PubMed ID: 17204664
    [Abstract] [Full Text] [Related]

  • 3. Stem cell factor and c-kit are expressed by and may affect vascular SMCs through an autocrine pathway.
    Hollenbeck ST, Sakakibara K, Faries PL, Workhu B, Liu B, Kent KC.
    J Surg Res; 2004 Aug 15; 120(2):288-94. PubMed ID: 15234225
    [Abstract] [Full Text] [Related]

  • 4. Endothelial NO synthase deficiency promotes smooth muscle progenitor cells in association with upregulation of stromal cell-derived factor-1alpha in a mouse model of carotid artery ligation.
    Zhang LN, Wilson DW, da Cunha V, Sullivan ME, Vergona R, Rutledge JC, Wang YX.
    Arterioscler Thromb Vasc Biol; 2006 Apr 15; 26(4):765-72. PubMed ID: 16456092
    [Abstract] [Full Text] [Related]

  • 5. SDF-1alpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells.
    Zernecke A, Schober A, Bot I, von Hundelshausen P, Liehn EA, Möpps B, Mericskay M, Gierschik P, Biessen EA, Weber C.
    Circ Res; 2005 Apr 15; 96(7):784-91. PubMed ID: 15761195
    [Abstract] [Full Text] [Related]

  • 6. Role of bone marrow-derived progenitor cells in cuff-induced vascular injury in mice.
    Xu Y, Arai H, Zhuge X, Sano H, Murayama T, Yoshimoto M, Heike T, Nakahata T, Nishikawa S, Kita T, Yokode M.
    Arterioscler Thromb Vasc Biol; 2004 Mar 15; 24(3):477-82. PubMed ID: 14739121
    [Abstract] [Full Text] [Related]

  • 7. Role of stem cell factor and c-kit signaling in regulation of fetal intestinal epithelial cell adhesion to fibronectin.
    Shimizu M, Minakuchi K, Tsuda A, Hiroi T, Tanaka N, Koga J, Kiyono H.
    Exp Cell Res; 2001 Jun 10; 266(2):311-22. PubMed ID: 11399059
    [Abstract] [Full Text] [Related]

  • 8. Rosiglitazone facilitates angiogenic progenitor cell differentiation toward endothelial lineage: a new paradigm in glitazone pleiotropy.
    Wang CH, Ciliberti N, Li SH, Szmitko PE, Weisel RD, Fedak PW, Al-Omran M, Cherng WJ, Li RK, Stanford WL, Verma S.
    Circulation; 2004 Mar 23; 109(11):1392-400. PubMed ID: 14993120
    [Abstract] [Full Text] [Related]

  • 9. Bone marrow AT1 augments neointima formation by promoting mobilization of smooth muscle progenitors via platelet-derived SDF-1{alpha}.
    Yokoi H, Yamada H, Tsubakimoto Y, Takata H, Kawahito H, Kishida S, Kato T, Matsui A, Hirai H, Ashihara E, Maekawa T, Iwai M, Horiuchi M, Ikeda K, Takahashi T, Okigaki M, Matsubara H.
    Arterioscler Thromb Vasc Biol; 2010 Jan 23; 30(1):60-7. PubMed ID: 19834109
    [Abstract] [Full Text] [Related]

  • 10. Temporal and spatial characterization of cellular constituents during neointimal hyperplasia after vascular injury: Potential contribution of bone-marrow-derived progenitors to arterial remodeling.
    Shoji M, Sata M, Fukuda D, Tanaka K, Sato T, Iso Y, Shibata M, Suzuki H, Koba S, Geshi E, Katagiri T.
    Cardiovasc Pathol; 2004 Jan 23; 13(6):306-12. PubMed ID: 15556776
    [Abstract] [Full Text] [Related]

  • 11. Angiotensin II receptor blocker inhibits neointimal hyperplasia through regulation of smooth muscle-like progenitor cells.
    Yamada T, Kondo T, Numaguchi Y, Tsuzuki M, Matsubara T, Manabe I, Sata M, Nagai R, Murohara T.
    Arterioscler Thromb Vasc Biol; 2007 Nov 23; 27(11):2363-9. PubMed ID: 17717297
    [Abstract] [Full Text] [Related]

  • 12. Targeted disruption of TGF-beta-Smad3 signaling leads to enhanced neointimal hyperplasia with diminished matrix deposition in response to vascular injury.
    Kobayashi K, Yokote K, Fujimoto M, Yamashita K, Sakamoto A, Kitahara M, Kawamura H, Maezawa Y, Asaumi S, Tokuhisa T, Mori S, Saito Y.
    Circ Res; 2005 Apr 29; 96(8):904-12. PubMed ID: 15790953
    [Abstract] [Full Text] [Related]

  • 13. Oral imatinib mesylate (STI571/gleevec) improves the efficacy of local intravascular vascular endothelial growth factor-C gene transfer in reducing neointimal growth in hypercholesterolemic rabbits.
    Leppänen O, Rutanen J, Hiltunen MO, Rissanen TT, Turunen MP, Sjöblom T, Brüggen J, Bäckström G, Carlsson M, Buchdunger E, Bergqvist D, Alitalo K, Heldin CH, Ostman A, Ylä-Herttuala S.
    Circulation; 2004 Mar 09; 109(9):1140-6. PubMed ID: 14769706
    [Abstract] [Full Text] [Related]

  • 14. Fyn kinase acts upstream of Shp2 and p38 mitogen-activated protein kinase to promote chemotaxis of mast cells towards stem cell factor.
    Samayawardhena LA, Hu J, Stein PL, Craig AW.
    Cell Signal; 2006 Sep 09; 18(9):1447-54. PubMed ID: 16442778
    [Abstract] [Full Text] [Related]

  • 15. Crucial role of stromal cell-derived factor-1alpha in neointima formation after vascular injury in apolipoprotein E-deficient mice.
    Schober A, Knarren S, Lietz M, Lin EA, Weber C.
    Circulation; 2003 Nov 18; 108(20):2491-7. PubMed ID: 14581398
    [Abstract] [Full Text] [Related]

  • 16. Hypercholesterolemia contributes to the development of atherosclerosis and vascular remodeling by recruiting bone marrow-derived cells in cuff-induced vascular injury.
    Xu Y, Arai H, Murayama T, Kita T, Yokode M.
    Biochem Biophys Res Commun; 2007 Nov 23; 363(3):782-7. PubMed ID: 17897625
    [Abstract] [Full Text] [Related]

  • 17. Diverse contribution of bone marrow-derived cells to vascular remodeling associated with pulmonary arterial hypertension and arterial neointimal formation.
    Sahara M, Sata M, Morita T, Nakamura K, Hirata Y, Nagai R.
    Circulation; 2007 Jan 30; 115(4):509-17. PubMed ID: 17242277
    [Abstract] [Full Text] [Related]

  • 18. Inflammatory response to acute myocardial infarction augments neointimal hyperplasia after vascular injury in a remote artery.
    Takaoka M, Uemura S, Kawata H, Imagawa K, Takeda Y, Nakatani K, Naya N, Horii M, Yamano S, Miyamoto Y, Yoshimasa Y, Saito Y.
    Arterioscler Thromb Vasc Biol; 2006 Sep 30; 26(9):2083-9. PubMed ID: 16778119
    [Abstract] [Full Text] [Related]

  • 19. Critical role of bone marrow apoptosis-associated speck-like protein, an inflammasome adaptor molecule, in neointimal formation after vascular injury in mice.
    Yajima N, Takahashi M, Morimoto H, Shiba Y, Takahashi Y, Masumoto J, Ise H, Sagara J, Nakayama J, Taniguchi S, Ikeda U.
    Circulation; 2008 Jun 17; 117(24):3079-87. PubMed ID: 18541743
    [Abstract] [Full Text] [Related]

  • 20. Plasminogen activator inhibitor-1 from bone marrow-derived cells suppresses neointimal formation after vascular injury in mice.
    Schäfer K, Schroeter MR, Dellas C, Puls M, Nitsche M, Weiss E, Hasenfuss G, Konstantinides SV.
    Arterioscler Thromb Vasc Biol; 2006 Jun 17; 26(6):1254-9. PubMed ID: 16514083
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.