These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
165 related items for PubMed ID: 16933342
1. Ethylene biosynthesis by 1-aminocyclopropane-1-carboxylic acid oxidase: a DFT study. Bassan A, Borowski T, Schofield CJ, Siegbahn PE. Chemistry; 2006 Nov 24; 12(34):8835-46. PubMed ID: 16933342 [Abstract] [Full Text] [Related]
2. Spectroscopic studies of 1-aminocyclopropane-1-carboxylic acid oxidase: molecular mechanism and CO(2) activation in the biosynthesis of ethylene. Zhou J, Rocklin AM, Lipscomb JD, Que L, Solomon EI. J Am Chem Soc; 2002 May 01; 124(17):4602-9. PubMed ID: 11971707 [Abstract] [Full Text] [Related]
3. Mechanistic studies of 1-aminocyclopropane-1-carboxylic acid oxidase: single turnover reaction. Rocklin AM, Kato K, Liu HW, Que L, Lipscomb JD. J Biol Inorg Chem; 2004 Mar 01; 9(2):171-82. PubMed ID: 14714198 [Abstract] [Full Text] [Related]
4. Bio-inspired amino acid oxidation by a non-heme iron catalyst modeling the action of 1-aminocyclopropane-1-carboxylic acid oxidase. Baráth G, Kaizer J, Pap JS, Speier G, El Bakkali-Taheri N, Simaan AJ. Chem Commun (Camb); 2010 Oct 21; 46(39):7391-3. PubMed ID: 20830340 [Abstract] [Full Text] [Related]
6. A simple complex on the verge of breakdown: isolation of the elusive cyanoformate ion. Murphy LJ, Robertson KN, Harroun SG, Brosseau CL, Werner-Zwanziger U, Moilanen J, Tuononen HM, Clyburne JA. Science; 2014 Apr 04; 344(6179):75-8. PubMed ID: 24700853 [Abstract] [Full Text] [Related]
7. Identification of a copper(I) intermediate in the conversion of 1-aminocyclopropane carboxylic acid (ACC) into ethylene by Cu(II)-ACC complexes and hydrogen peroxide. Ghattas W, Giorgi M, Mekmouche Y, Tanaka T, Rockenbauer A, Réglier M, Hitomi Y, Simaan AJ. Inorg Chem; 2008 Jun 02; 47(11):4627-38. PubMed ID: 18442237 [Abstract] [Full Text] [Related]
10. Role of the nonheme Fe(II) center in the biosynthesis of the plant hormone ethylene. Rocklin AM, Tierney DL, Kofman V, Brunhuber NM, Hoffman BM, Christoffersen RE, Reich NO, Lipscomb JD, Que L. Proc Natl Acad Sci U S A; 1999 Jul 06; 96(14):7905-9. PubMed ID: 10393920 [Abstract] [Full Text] [Related]
11. Mechanism of dioxygen cleavage in tetrahydrobiopterin-dependent amino acid hydroxylases. Bassan A, Blomberg MR, Siegbahn PE. Chemistry; 2003 Jan 03; 9(1):106-15. PubMed ID: 12506369 [Abstract] [Full Text] [Related]
15. Structural analysis of Pseudomonas 1-aminocyclopropane-1-carboxylate deaminase complexes: insight into the mechanism of a unique pyridoxal-5'-phosphate dependent cyclopropane ring-opening reaction. Karthikeyan S, Zhou Q, Zhao Z, Kao CL, Tao Z, Robinson H, Liu HW, Zhang H. Biochemistry; 2004 Oct 26; 43(42):13328-39. PubMed ID: 15491139 [Abstract] [Full Text] [Related]
19. Dioxygen activation by copper, heme and non-heme iron enzymes: comparison of electronic structures and reactivities. Decker A, Solomon EI. Curr Opin Chem Biol; 2005 Apr 26; 9(2):152-63. PubMed ID: 15811799 [Abstract] [Full Text] [Related]
20. Spectroscopic and electronic structure studies of the role of active site interactions in the decarboxylation reaction of alpha-keto acid-dependent dioxygenases. Neidig ML, Brown CD, Kavana M, Choroba OW, Spencer JB, Moran GR, Solomon EI. J Inorg Biochem; 2006 Dec 26; 100(12):2108-16. PubMed ID: 17070917 [Abstract] [Full Text] [Related] Page: [Next] [New Search]