These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


179 related items for PubMed ID: 16934761

  • 21. Molecular determinants of Grb14-mediated inhibition of insulin signaling.
    Goenaga D, Hampe C, Carré N, Cailliau K, Browaeys-Poly E, Perdereau D, Holt LJ, Daly RJ, Girard J, Broutin I, Issad T, Burnol AF.
    Mol Endocrinol; 2009 Jul; 23(7):1043-51. PubMed ID: 19359342
    [Abstract] [Full Text] [Related]

  • 22. Insulin resistance induced by tumor necrosis factor-alpha in myocytes and brown adipocytes.
    Lorenzo M, Fernández-Veledo S, Vila-Bedmar R, Garcia-Guerra L, De Alvaro C, Nieto-Vazquez I.
    J Anim Sci; 2008 Apr; 86(14 Suppl):E94-104. PubMed ID: 17940160
    [Abstract] [Full Text] [Related]

  • 23. Real-time monitoring of receptor and G-protein interactions in living cells.
    Galés C, Rebois RV, Hogue M, Trieu P, Breit A, Hébert TE, Bouvier M.
    Nat Methods; 2005 Mar; 2(3):177-84. PubMed ID: 15782186
    [Abstract] [Full Text] [Related]

  • 24. Evidence for an interaction between the insulin receptor and Grb7. A role for two of its binding domains, PIR and SH2.
    Kasus-Jacobi A, Béréziat V, Perdereau D, Girard J, Burnol AF.
    Oncogene; 2000 Apr 13; 19(16):2052-9. PubMed ID: 10803466
    [Abstract] [Full Text] [Related]

  • 25. Inhibition of insulin receptor catalytic activity by the molecular adapter Grb14.
    Béréziat V, Kasus-Jacobi A, Perdereau D, Cariou B, Girard J, Burnol AF.
    J Biol Chem; 2002 Feb 15; 277(7):4845-52. PubMed ID: 11726652
    [Abstract] [Full Text] [Related]

  • 26. Solution structure of the human Grb14-SH2 domain and comparison with the structures of the human Grb7-SH2/erbB2 peptide complex and human Grb10-SH2 domain.
    Scharf PJ, Witney J, Daly R, Lyons BA.
    Protein Sci; 2004 Sep 15; 13(9):2541-6. PubMed ID: 15322292
    [Abstract] [Full Text] [Related]

  • 27. Protein-tyrosine phosphatase 1B associates with insulin receptor and negatively regulates insulin signaling without receptor internalization.
    Shi K, Egawa K, Maegawa H, Nakamura T, Ugi S, Nishio Y, Kashiwagi A.
    J Biochem; 2004 Jul 15; 136(1):89-96. PubMed ID: 15269244
    [Abstract] [Full Text] [Related]

  • 28. Pharmacology and signaling properties of epidermal growth factor receptor isoforms studied by bioluminescence resonance energy transfer.
    Schiffer HH, Reding EC, Fuhs SR, Lu Q, Piu F, Wong S, Littler PL, Weiner DM, Keefe W, Tan PK, Nash NR, Knapp AE, Olsson R, Brann MR.
    Mol Pharmacol; 2007 Feb 15; 71(2):508-18. PubMed ID: 16968809
    [Abstract] [Full Text] [Related]

  • 29. Spatial and temporal aspects and the interplay of Grb14 and protein tyrosine phosphatase-1B on the insulin receptor phosphorylation.
    Rajala RV, Basavarajappa DK, Dighe R, Rajala A.
    Cell Commun Signal; 2013 Dec 18; 11():96. PubMed ID: 24350791
    [Abstract] [Full Text] [Related]

  • 30. Crystal structure of a complex between protein tyrosine phosphatase 1B and the insulin receptor tyrosine kinase.
    Li S, Depetris RS, Barford D, Chernoff J, Hubbard SR.
    Structure; 2005 Nov 18; 13(11):1643-51. PubMed ID: 16271887
    [Abstract] [Full Text] [Related]

  • 31. Dynamics of the interaction between the insulin receptor and protein tyrosine-phosphatase 1B in living cells.
    Boute N, Boubekeur S, Lacasa D, Issad T.
    EMBO Rep; 2003 Mar 18; 4(3):313-9. PubMed ID: 12634852
    [Abstract] [Full Text] [Related]

  • 32. Regulation of insulin receptor signaling by protein-tyrosine dephosphorylation.
    Goldstein BJ.
    Receptor; 1993 Mar 18; 3(1):1-15. PubMed ID: 8394171
    [Abstract] [Full Text] [Related]

  • 33. Characterization of G-protein coupled receptor kinase interaction with the neurokinin-1 receptor using bioluminescence resonance energy transfer.
    Jorgensen R, Holliday ND, Hansen JL, Vrecl M, Heding A, Schwartz TW, Elling CE.
    Mol Pharmacol; 2008 Feb 18; 73(2):349-58. PubMed ID: 17986524
    [Abstract] [Full Text] [Related]

  • 34. Identification of phosphocaveolin-1 as a novel protein tyrosine phosphatase 1B substrate.
    Lee H, Xie L, Luo Y, Lee SY, Lawrence DS, Wang XB, Sotgia F, Lisanti MP, Zhang ZY.
    Biochemistry; 2006 Jan 10; 45(1):234-40. PubMed ID: 16388599
    [Abstract] [Full Text] [Related]

  • 35. c-Abl and insulin receptor signalling.
    Genua M, Pandini G, Cassarino MF, Messina RL, Frasca F.
    Vitam Horm; 2009 Jan 10; 80():77-105. PubMed ID: 19251035
    [Abstract] [Full Text] [Related]

  • 36. Protein tyrosine phosphatases: the quest for negative regulators of insulin action.
    Asante-Appiah E, Kennedy BP.
    Am J Physiol Endocrinol Metab; 2003 Apr 10; 284(4):E663-70. PubMed ID: 12626322
    [Abstract] [Full Text] [Related]

  • 37. Phosphorylated Grb14 is an endogenous inhibitor of retinal protein tyrosine phosphatase 1B, and light-dependent activation of Src phosphorylates Grb14.
    Basavarajappa DK, Gupta VK, Dighe R, Rajala A, Rajala RV.
    Mol Cell Biol; 2011 Oct 10; 31(19):3975-87. PubMed ID: 21791607
    [Abstract] [Full Text] [Related]

  • 38. Effects of small interference RNA against PTP1B and TCPTP on insulin signaling pathway in mouse liver: evidence for non-synergetic cooperation.
    Xu J, Li L, Hong J, Huang W.
    Cell Biol Int; 2007 Jan 10; 31(1):88-91. PubMed ID: 17088077
    [Abstract] [Full Text] [Related]

  • 39. Phosphorylation of Grb14 BPS domain by GSK-3 correlates with complex forming of Grb14 and insulin receptor.
    Taira J, Higashimoto Y.
    J Biochem; 2014 Jun 10; 155(6):353-60. PubMed ID: 24535599
    [Abstract] [Full Text] [Related]

  • 40. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer.
    James JR, Oliveira MI, Carmo AM, Iaboni A, Davis SJ.
    Nat Methods; 2006 Dec 10; 3(12):1001-6. PubMed ID: 17086179
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.