These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
151 related items for PubMed ID: 16936844
1. Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. García-Martínez S, Andreani L, Garcia-Gusano M, Geuna F, Ruiz JJ. Genome; 2006 Jun; 49(6):648-56. PubMed ID: 16936844 [Abstract] [Full Text] [Related]
2. Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.). Park YH, West MA, St Clair DA. Genome; 2004 Jun; 47(3):510-8. PubMed ID: 15190368 [Abstract] [Full Text] [Related]
3. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien MA. Theor Appl Genet; 2005 Mar; 110(5):819-31. PubMed ID: 15700147 [Abstract] [Full Text] [Related]
4. Generation and mapping of AFLP, SSRs and SNPs in Lycopersicon esculentum. Suliman-Pollatschek S, Kashkush K, Shats H, Hillel J, Lavi U. Cell Mol Biol Lett; 2002 Mar; 7(2A):583-97. PubMed ID: 12378264 [Abstract] [Full Text] [Related]
5. Comparison of gSSR and EST-SSR markers for analyzing genetic variability among tomato cultivars (Solanum lycopersicum L.). Zhou R, Wu Z, Jiang FL, Liang M. Genet Mol Res; 2015 Oct 27; 14(4):13184-94. PubMed ID: 26535631 [Abstract] [Full Text] [Related]
7. AFLP technology for DNA fingerprinting. Vuylsteke M, Peleman JD, van Eijk MJ. Nat Protoc; 2007 Oct 27; 2(6):1387-98. PubMed ID: 17545976 [Abstract] [Full Text] [Related]
8. Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Mazzucato A, Papa R, Bitocchi E, Mosconi P, Nanni L, Negri V, Picarella ME, Siligato F, Soressi GP, Tiranti B, Veronesi F. Theor Appl Genet; 2008 Mar 27; 116(5):657-69. PubMed ID: 18193185 [Abstract] [Full Text] [Related]
9. Genetic diversity of cultivated and wild tomatoes revealed by morphological traits and SSR markers. Zhou R, Wu Z, Cao X, Jiang FL. Genet Mol Res; 2015 Oct 30; 14(4):13868-79. PubMed ID: 26535702 [Abstract] [Full Text] [Related]
10. Determining Phylogenetic Relationships Among Date Palm Cultivars Using Random Amplified Polymorphic DNA (RAPD) and Inter-Simple Sequence Repeat (ISSR) Markers. Haider N. Methods Mol Biol; 2017 Oct 30; 1638():153-172. PubMed ID: 28755222 [Abstract] [Full Text] [Related]
11. Genetic diversity and phylogeny of Japanese sake-brewing rice as revealed by AFLP and nuclear and chloroplast SSR markers. Hashimoto Z, Mori N, Kawamura M, Ishii T, Yoshida S, Ikegami M, Takumi S, Nakamura C. Theor Appl Genet; 2004 Nov 30; 109(8):1586-96. PubMed ID: 15375619 [Abstract] [Full Text] [Related]
12. Diversity and linkage disequilibrium analysis within a selected set of cultivated tomatoes. van Berloo R, Zhu A, Ursem R, Verbakel H, Gort G, van Eeuwijk FA. Theor Appl Genet; 2008 Jun 30; 117(1):89-101. PubMed ID: 18389208 [Abstract] [Full Text] [Related]
13. Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Saliba-Colombani V, Causse M, Gervais L, Philouze J. Genome; 2000 Feb 30; 43(1):29-40. PubMed ID: 10701110 [Abstract] [Full Text] [Related]
14. Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. He C, Poysa V, Yu K. Theor Appl Genet; 2003 Jan 30; 106(2):363-73. PubMed ID: 12582864 [Abstract] [Full Text] [Related]
15. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Aitken KS, Jackson PA, McIntyre CL. Theor Appl Genet; 2005 Mar 30; 110(5):789-801. PubMed ID: 15700149 [Abstract] [Full Text] [Related]
16. Amplified fragment length polymorphism: an invaluable fingerprinting technique for genomic, transcriptomic, and epigenetic studies. Paun O, Schönswetter P. Methods Mol Biol; 2012 Mar 30; 862():75-87. PubMed ID: 22419490 [Abstract] [Full Text] [Related]
17. Genetic diversity in european and Argentinian cultivated potatoes (Solanum tuberosum subsp. tuberosum) detected by inter-simple sequence repeats (ISSRs). Bornet B, Goraguer F, Joly G, Branchard M. Genome; 2002 Jun 30; 45(3):481-4. PubMed ID: 12033616 [Abstract] [Full Text] [Related]
18. Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Frary A, Xu Y, Liu J, Mitchell S, Tedeschi E, Tanksley S. Theor Appl Genet; 2005 Jul 30; 111(2):291-312. PubMed ID: 15926074 [Abstract] [Full Text] [Related]
19. Combined use of Amplified Fragment Length Polymorphism and IS6110-RFLP in fingerprinting clinical isolates of Mycobacterium tuberculosis from Kerala, South India. Krishnan MY, Radhakrishnan I, Joseph BV, Madhavi Latha GK, Ajay Kumar R, Mundayoor S. BMC Infect Dis; 2007 Jul 28; 7():86. PubMed ID: 17662148 [Abstract] [Full Text] [Related]
20. Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Zhebentyayeva TN, Reighard GL, Gorina VM, Abbott AG. Theor Appl Genet; 2003 Feb 28; 106(3):435-44. PubMed ID: 12589543 [Abstract] [Full Text] [Related] Page: [Next] [New Search]