These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


156 related items for PubMed ID: 1693858

  • 1. Enhancement of transmembrane proton conductivity of protonophores by membrane-permeant cations.
    Ahmed I, Krishnamoorthy G.
    Biochim Biophys Acta; 1990 May 24; 1024(2):298-306. PubMed ID: 1693858
    [Abstract] [Full Text] [Related]

  • 2. [Study of membrane potential of Bacillus subtilis and Escherichia coli cells by the penetration ions methods].
    Grinius LL, Daugelabichius RIu, Al'kimavichius GA.
    Biokhimiia; 1980 Sep 24; 45(9):1609-18. PubMed ID: 6166329
    [Abstract] [Full Text] [Related]

  • 3. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP.
    Biochim Biophys Acta; 1982 Sep 15; 681(3):474-83. PubMed ID: 6812627
    [Abstract] [Full Text] [Related]

  • 4. Electrical potential dependence of Na+-sugar cotransport determined using TPP+ influx.
    Restrepo D, Kimmich GA.
    Ann N Y Acad Sci; 1985 Sep 15; 456():77-9. PubMed ID: 3867314
    [No Abstract] [Full Text] [Related]

  • 5. Plasma membrane potential of murine erythroleukemia cells: approach to measurement and evidence for cell-density dependence.
    Arcangeli A, Olivotto M.
    J Cell Physiol; 1986 Apr 15; 127(1):17-27. PubMed ID: 3457015
    [Abstract] [Full Text] [Related]

  • 6. Role of metal ion free valinomycin-carbonyl cyanide m-chlorophenylhydrazone complex in the enhancement of the rates of gramicidin facilitated net H+, Li+ and Na+ transport across phospholipid vesicular membrane.
    Prabhananda BS, Kombrabail MH.
    Biochim Biophys Acta; 1997 Jan 14; 1323(1):137-44. PubMed ID: 9030220
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Failure of an alkalophilic bacterium to synthesize ATP in response to a valinomycin-induced potassium diffusion potential at high pH.
    Guffanti AA, Chiu E, Krulwich TA.
    Arch Biochem Biophys; 1985 Jun 14; 239(2):327-33. PubMed ID: 4004268
    [Abstract] [Full Text] [Related]

  • 9. Mechanism of energization of uptake of the fluorescent dye 2-(4-dimethylaminostyryl)-1-ethylpyridinium cation [DMP+] into an acrA strain of Escherichia coli.
    Sedgwick EG, Bragg PD.
    Biochim Biophys Acta; 1992 Jan 30; 1099(1):51-6. PubMed ID: 1739728
    [Abstract] [Full Text] [Related]

  • 10. [Proton-potassium exchange in Escherichia coli].
    Durgar'ian SS, Martirosov SM.
    Biofizika; 1980 Jan 30; 25(3):469-72. PubMed ID: 6994822
    [Abstract] [Full Text] [Related]

  • 11. Effect of extracellular potassium on amino acid transport and membrane potential in fetal human fibroblasts.
    Bussolati O, Laris PC, Longo N, Dall'Asta V, Franchi-Gazzola R, Guidotti GG, Gazzola GC.
    Biochim Biophys Acta; 1986 Jan 29; 854(2):240-50. PubMed ID: 3942729
    [Abstract] [Full Text] [Related]

  • 12. The effect of respiration on the permeability of the mitochondrial membrane to ions.
    Luvisetto S, Schemehl I, Canton M, Azzone GF.
    Biochim Biophys Acta; 1994 Jun 28; 1186(1-2):12-8. PubMed ID: 8011661
    [Abstract] [Full Text] [Related]

  • 13. A membrane potential-sensitive Na+-H+ exchange system in flagella isolated from sea urchin spermatozoa.
    Lee HC.
    J Biol Chem; 1984 Dec 25; 259(24):15315-9. PubMed ID: 6096367
    [Abstract] [Full Text] [Related]

  • 14. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore.
    Severin FF, Severina II, Antonenko YN, Rokitskaya TI, Cherepanov DA, Mokhova EN, Vyssokikh MY, Pustovidko AV, Markova OV, Yaguzhinsky LS, Korshunova GA, Sumbatyan NV, Skulachev MV, Skulachev VP.
    Proc Natl Acad Sci U S A; 2010 Jan 12; 107(2):663-8. PubMed ID: 20080732
    [Abstract] [Full Text] [Related]

  • 15. Combination of the electrogenic ionophores, valinomycin and CCCP, can lead to non-electrogenic K+/H+ exchange on bilayer lipid membranes.
    Orlov VN, Antonenko YN, Bulychev AA, Yaguzhinsky LS.
    FEBS Lett; 1994 May 30; 345(2-3):104-6. PubMed ID: 7515356
    [Abstract] [Full Text] [Related]

  • 16. Quantitative measurements of the proton-motive force and its relation to steady state lactose accumulation in Escherichia coli.
    Ahmed S, Booth IR.
    Biochem J; 1981 Dec 15; 200(3):573-81. PubMed ID: 6282253
    [Abstract] [Full Text] [Related]

  • 17. Activation energy for permeation of phosphonium cations through phospholipid bilayer membrane.
    Ono A, Miyauchi S, Demura M, Asakura T, Kamo N.
    Biochemistry; 1994 Apr 12; 33(14):4312-8. PubMed ID: 8155648
    [Abstract] [Full Text] [Related]

  • 18. Ionic regulation of the plasma membrane potential of rainbow trout (Salmo gairdneri) spermatozoa: role in the initiation of sperm motility.
    Gatti JL, Billard R, Christen R.
    J Cell Physiol; 1990 Jun 12; 143(3):546-54. PubMed ID: 2358473
    [Abstract] [Full Text] [Related]

  • 19. Proton motive force during growth of Streptococcus lactis cells.
    Kashket ER, Blanchard AG, Metzger WC.
    J Bacteriol; 1980 Jul 12; 143(1):128-34. PubMed ID: 6772626
    [Abstract] [Full Text] [Related]

  • 20. Differential effects of metabolic inhibitors on cellular and mitochondrial uptake of organic cations in rat liver.
    Steen H, Maring JG, Meijer DK.
    Biochem Pharmacol; 1993 Feb 24; 45(4):809-18. PubMed ID: 8452555
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.